22edo: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
 
Line 1,476: Line 1,476:
; [[35edt]]  
; [[35edt]]  
* Step size: 54.342{{c}}, octave size: 1195.5{{c}}
* Step size: 54.342{{c}}, octave size: 1195.5{{c}}
Compressing the octave of 22edo by around 4.5{{c}} results in greatly improved primes 3, 7 and 13, but far worse primes 5 and 11 and a [[JND|just noticeably worse]] 2. This approximates all harmonics up to 16 within 21.4{{c}}. The tunings 35edt and [[equal tuning|62ed7]] both do this. This extends 57ed6's 2.3.7 tuning into a 2.3.7.13 [[subgroup]] tuning.
Compressing the octave of 22edo by around 4.5{{c}} results in greatly improved primes 3, 7 and 13, but far worse primes 5 and 11 and a moderately worse 2. This approximates all harmonics up to 16 within 21.4{{c}}. The tunings 35edt and [[equal tuning|62ed7]] both do this. This extends 57ed6's 2.3.7 tuning into a 2.3.7.13 [[subgroup]] tuning.
{{Harmonics in equal|35|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 35edt}}
{{Harmonics in equal|35|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 35edt}}
{{Harmonics in equal|35|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 35edt (continued)}}
{{Harmonics in equal|35|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 35edt (continued)}}