User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 16: | Line 16: | ||
; [[WE|22et, 11-limit WE tuning]] | ; [[WE|22et, 11-limit WE tuning]] | ||
* Step size: 54.494{{c}}, octave size: | * Step size: 54.494{{c}}, octave size: 1198.9{{c}} | ||
Compressing the octave of 22edo by around | Compressing the octave of 22edo by around 1{{c}} results in improved primes 3 and 7, but worse primes 5, 11 and 13. This approximates all harmonics up to 16 within 26.5{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this. | ||
{{Harmonics in cet|54.494|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 22et, 11-limit WE tuning}} | {{Harmonics in cet|54.494|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 22et, 11-limit WE tuning}} | ||
{{Harmonics in cet|54.494|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 22et, 11-limit WE tuning (continued)}} | {{Harmonics in cet|54.494|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 22et, 11-limit WE tuning (continued)}} | ||
; [[zpi|80zpi]] | ; [[zpi|80zpi]] | ||
* Step size: 54.483{{c}}, octave size: | * Step size: 54.483{{c}}, octave size: 1198.6{{c}} | ||
Compressing the octave of 22edo by around | Compressing the octave of 22edo by around 1{{c}} results in improved primes 3 and 7, but worse primes 5, 11 and 13. This approximates all harmonics up to 16 within 27.1{{c}}. The tuning 80zpi does this. | ||
{{Harmonics in cet|54.483|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi}} | {{Harmonics in cet|54.483|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi}} | ||
{{Harmonics in cet|54.483|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi (continued)}} | {{Harmonics in cet|54.483|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi (continued)}} | ||
; [[ | ; [[57ed6]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of | _ing the octave of 22edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 57ed6 does this. | ||
{{Harmonics in equal|57|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in | {{Harmonics in equal|57|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 57ed6}} | ||
{{Harmonics in equal|57|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in | {{Harmonics in equal|57|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 57ed6 (continued)}} | ||
; [[35edt]] | ; [[35edt]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of | _ing the octave of 22edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 35edt does this. | ||
{{Harmonics in equal|35|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in | {{Harmonics in equal|35|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 35edt}} | ||
{{Harmonics in equal|35|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in | {{Harmonics in equal|35|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 35edt (continued)}} | ||