User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
Line 16: Line 16:


; [[WE|22et, 11-limit WE tuning]]  
; [[WE|22et, 11-limit WE tuning]]  
* Step size: 54.494{{c}}, octave size: NNN{{c}}
* Step size: 54.494{{c}}, octave size: 1198.9{{c}}
Compressing the octave of 22edo by around half a cent results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this.
Compressing the octave of 22edo by around 1{{c}} results in improved primes 3 and 7, but worse primes 5, 11 and 13. This approximates all harmonics up to 16 within 26.5{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this.
{{Harmonics in cet|54.494|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 22et, 11-limit WE tuning}}
{{Harmonics in cet|54.494|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 22et, 11-limit WE tuning}}
{{Harmonics in cet|54.494|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 22et, 11-limit WE tuning (continued)}}
{{Harmonics in cet|54.494|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 22et, 11-limit WE tuning (continued)}}


; [[zpi|80zpi]]  
; [[zpi|80zpi]]  
* Step size: 54.483{{c}}, octave size: NNN{{c}}
* Step size: 54.483{{c}}, octave size: 1198.6{{c}}
Compressing the octave of 22edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 80zpi does this.
Compressing the octave of 22edo by around 1{{c}} results in improved primes 3 and 7, but worse primes 5, 11 and 13. This approximates all harmonics up to 16 within 27.1{{c}}. The tuning 80zpi does this.
{{Harmonics in cet|54.483|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi}}
{{Harmonics in cet|54.483|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi}}
{{Harmonics in cet|54.483|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi (continued)}}
{{Harmonics in cet|54.483|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi (continued)}}


; [[35edt]]  
; [[57ed6]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
_ing the octave of 22edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 57ed6 does this.
{{Harmonics in equal|57|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|57|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 57ed6}}
{{Harmonics in equal|57|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}}
{{Harmonics in equal|57|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 57ed6 (continued)}}
 
; [[13edf]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|13|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|13|3|2|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}}


; [[35edt]]  
; [[35edt]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
_ing the octave of 22edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 35edt does this.
{{Harmonics in equal|35|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|35|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 35edt}}
{{Harmonics in equal|35|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}}
{{Harmonics in equal|35|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 35edt (continued)}}
 
 
13edf
35edt