User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 6: | Line 6: | ||
= Title2 = | = Title2 = | ||
== Octave | == Octave compression == | ||
What follows is a comparison of | What follows is a comparison of compressed-octave 17edo tunings. | ||
; [[ | ; 17edo | ||
* Step size: | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning | Pure-octaves 17edo approximates all harmonics up to 16 within NNN{{c}}. | ||
{{Harmonics in | {{Harmonics in equal|17|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 17edo}} | ||
{{Harmonics in | {{Harmonics in equal|17|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 17edo (continued)}} | ||
; [[44ed6]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 44ed6 does this. | |||
{{Harmonics in equal|44|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 44ed6}} | |||
{{Harmonics in equal|44|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 44ed6 (continued)}} | |||
; [[27edt]] | ; [[27edt]] | ||
Line 21: | Line 27: | ||
{{Harmonics in equal|27|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27edt (continued)}} | {{Harmonics in equal|27|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 27edt (continued)}} | ||
; [[ | ; [[zpi|56zpi]] | ||
* Step size: | * Step size: 70.403{{c}}, octave size: NNN{{c}} | ||
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning | _ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 56zpi does this. | ||
{{Harmonics in | {{Harmonics in cet|70.403|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 56zpi}} | ||
{{Harmonics in | {{Harmonics in cet|70.403|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 56zpi (continued)}} | ||
; [[WE|17et, 2.3.7.11.13 WE tuning]] | |||
* Step size: 70.410{{c}}, octave size: NNN{{c}} | |||
_ing the octave of 17edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 2.3.7.11.13 WE tuning and 2.3.7.11.13 [[TE]] tuning both do this. | |||
{{Harmonics in cet|70.410|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 17et, 2.3.7.11.13 WE tuning}} | |||
{{Harmonics in cet|70.410|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 17et, 2.3.7.11.13 WE tuning (continued)}} | |||
; [[WE|17et, 2.3.7.11 WE tuning]] | ; [[WE|17et, 2.3.7.11 WE tuning]] | ||
Line 32: | Line 44: | ||
{{Harmonics in cet|70.392|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 17et, 2.3.7.11 WE tuning}} | {{Harmonics in cet|70.392|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 17et, 2.3.7.11 WE tuning}} | ||
{{Harmonics in cet|70.392|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 17et, 2.3.7.11 WE tuning (continued)}} | {{Harmonics in cet|70.392|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 17et, 2.3.7.11 WE tuning (continued)}} | ||