User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
mNo edit summary
BudjarnLambeth (talk | contribs)
mNo edit summary
Line 1: Line 1:
= Title1 =
{{Harmonics in equal|40|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in equal|40|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in equal|7|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}}  
{{Harmonics in equal|7|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}}  
{{Harmonics in equal|19|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}}  
{{Harmonics in equal|19|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}}  
{{Harmonics in equal|31|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in equal|31|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}}
= Title2 =
== Octave stretch or compression ==
What follows is a comparison of stretched- and compressed-octave 12edo tunings.
; [[40ed10]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 40ed10 does this.
{{Harmonics in equal|40|10|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 40ed10}}
{{Harmonics in equal|40|10|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 40ed10 (continued)}}
; [[WE|12et, 7-limit WE tuning]]
* Step size: 99.664{{c}}, octave size: NNN{{c}}
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this.
{{Harmonics in cet|99.664|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 7-limit WE tuning}}
{{Harmonics in cet|99.664|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 7-limit WE tuning (continued)}}
; [[zpi|34zpi]]
* Step size: 99.807{{c}}, octave size: NNN{{c}}
Compressing the octave of 12edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 34zpi does this.
{{Harmonics in cet|99.807|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 34zpi}}
{{Harmonics in cet|99.807|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 34zpi (continued)}}
; [[WE|12et, 5-limit WE tuning]]
* Step size: 99.868{{c}}, octave size: NNN{{c}}
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 5-limit WE tuning and 5-limit [[TE]] tuning both do this.
{{Harmonics in cet|99.868|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 5-limit WE tuning}}
{{Harmonics in cet|99.868|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 5-limit WE tuning (continued)}}
; [[WE|12et, 2.3.5.17.19 WE tuning]]
* Step size: 99.930{{c}}, octave size: NNN{{c}}
Compressing the octave of 12edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The 2.3.5.17.19 WE tuning and 2.3.5.17.19 [[TE]] tuning both do this.
{{Harmonics in cet|99.930|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 2.3.5.17.19 WE tuning}}
{{Harmonics in cet|99.930|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 2.3.5.17.19 WE tuning (continued)}}
; 12edo
* Step size: 100.000{{c}}, octave size: 1200.0{{c}}
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONAME}}
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONAME (continued)}}
; [[31ed6]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of 12edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 31ed6 does this.
{{Harmonics in equal|31|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6}}
{{Harmonics in equal|31|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6 (continued)}}
; [[19edt]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of 12edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 19edt does this.
{{Harmonics in equal|19|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt}}
{{Harmonics in equal|19|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt (continued)}}
; [[7edf]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of 12edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 7edf does this.
{{Harmonics in equal|7|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf}}
{{Harmonics in equal|7|3|2|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf (continued)}}