User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
Line 11: Line 11:
; [[WE|7et, 2.3.11.13 WE]]  
; [[WE|7et, 2.3.11.13 WE]]  
* Step size: 171.993{{c}}, octave size: 1204.0{{c}}
* Step size: 171.993{{c}}, octave size: 1204.0{{c}}
Stretching the octave of 7edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The 2.3.11.13 WE tuning and 2.3.11.13 [[TE]] tuning both do this.
Stretching the octave of 7edo by around 4{{c}} results in much improved primes 3, 5 and 11, but much worse primes 7 and 13. This approximates all harmonics up to 16 within 75.0{{c}}. The 2.3.11.13 WE tuning and 2.3.11.13 [[TE]] tuning both do this.
{{Harmonics in cet|171.993|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7et, 2.3.11.13 WE}}
{{Harmonics in cet|171.993|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7et, 2.3.11.13 WE}}
{{Harmonics in cet|171.993|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7et, 2.3.11.13 WE (continued)}}
{{Harmonics in cet|171.993|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7et, 2.3.11.13 WE (continued)}}
Line 17: Line 17:
; [[18ed6]]  
; [[18ed6]]  
* Step size: 172.331{{c}}, octave size: 1206.3{{c}}
* Step size: 172.331{{c}}, octave size: 1206.3{{c}}
Stretching the octave of 7edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 18ed6 does this.
Stretching the octave of 7edo by around 6{{c}} results in much improved primes 3, 5 and 7, but much worse primes 11 and 14. This approximates all harmonics up to 16 within 48.7{{c}}. The tuning 18ed6 does this.
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 18ed6}}
{{Harmonics in equal|18|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 18ed6}}
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 18ed6 (continued)}}
{{Harmonics in equal|18|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 18ed6 (continued)}}


; [[WE|7et, 2.3.5.11.13 WE]]  
; [[WE|7et, 2.3.5.11.13 WE]]  
* Step size: 172.390{{c}}, octave size: 1206.7{{c}}
* Step size: 172.390{{c}}, octave size: 1206.7{{c}}
Stretching the octave of 7edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 2.3.5.11.13 WE tuning and 2.3.5.11.13 [[TE]] tuning both do this.
Stretching the octave of 7edo by around 7{{c}} results in much improved primes 3, 5 and 11, but much worse primes 7 and 13. This approximates all harmonics up to 16 within 85.7{{c}}. Its 2.3.5.11.13 WE tuning and 2.3.5.11.13 [[TE]] tuning both do this.
{{Harmonics in cet|172.390|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7et, 2.3.5.11.13 WE}}
{{Harmonics in cet|172.390|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7et, 2.3.5.11.13 WE}}
{{Harmonics in cet|172.390|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7et, 2.3.5.11.13 WE (continued)}}
{{Harmonics in cet|172.390|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7et, 2.3.5.11.13 WE (continued)}}
Line 29: Line 29:
; [[zpi|15zpi]]  
; [[zpi|15zpi]]  
* Step size: 172.495{{c}}, octave size: 1207.5{{c}}
* Step size: 172.495{{c}}, octave size: 1207.5{{c}}
Stretching the octave of 7edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 15zpi does this.
Stretching the octave of 7edo by around 7.5{{c}} results in much improved primes 3, 5 and 11, but much worse primes 2, 7 and 13. This approximates all harmonics up to 16 within 84.0{{c}}. The tuning 15zpi does this.
{{Harmonics in cet|172.495|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 15zpi}}
{{Harmonics in cet|172.495|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 15zpi}}
{{Harmonics in cet|172.495|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 15zpi (continued)}}
{{Harmonics in cet|172.495|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 15zpi (continued)}}
Line 35: Line 35:
; [[11edt]]  
; [[11edt]]  
* Step size: 172.905{{c}}, octave size: 1210.3{{c}}
* Step size: 172.905{{c}}, octave size: 1210.3{{c}}
Stretching the octave of 7edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 11edt does this.
Stretching the octave of 7edo by around NNN{{c}} results in much improved primes 3, 5 and 11, but much worse primes 2, 7 and 13. This approximates all harmonics up to 16 within 83.6{{c}}. The tuning 11edt does this.
{{Harmonics in equal|11|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 11edt}}
{{Harmonics in equal|11|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 11edt}}
{{Harmonics in equal|11|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 11edt (continued)}}
{{Harmonics in equal|11|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 11edt (continued)}}