User:BudjarnLambeth/Draft related tunings section: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
Line 124: Line 124:
; [[zpi|ZPINAME]]  
; [[zpi|ZPINAME]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME (continued)}}
{{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME (continued)}}
Line 130: Line 130:
; [[EDONOI]]  
; [[EDONOI]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}}
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}}
Line 136: Line 136:
; [[TE|ETNAME, TETUNING]]  
; [[TE|ETNAME, TETUNING]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TETUNING does this.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TETUNING does this.
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING}}
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING}}
{{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING (continued)}}
{{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING (continued)}}
Line 148: Line 148:
; [[TE|ETNAME, TETUNING]]  
; [[TE|ETNAME, TETUNING]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TETUNING does this.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TETUNING does this.
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING}}
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING}}
{{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING (continued)}}
{{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING (continued)}}
Line 154: Line 154:
; [[EDONOI]]  
; [[EDONOI]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}}
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}}
Line 160: Line 160:
; [[zpi|ZPINAME]]  
; [[zpi|ZPINAME]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME (continued)}}
{{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME (continued)}}