User:BudjarnLambeth/Draft related tunings section: Difference between revisions
Line 124: | Line 124: | ||
; [[zpi|ZPINAME]] | ; [[zpi|ZPINAME]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of EDONAME by | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this. | ||
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}} | {{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}} | ||
{{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME (continued)}} | {{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME (continued)}} | ||
Line 130: | Line 130: | ||
; [[EDONOI]] | ; [[EDONOI]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of EDONAME by | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | ||
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}} | {{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}} | {{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}} | ||
Line 136: | Line 136: | ||
; [[TE|ETNAME, TETUNING]] | ; [[TE|ETNAME, TETUNING]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of EDONAME by | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TETUNING does this. | ||
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING}} | {{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING}} | ||
{{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING (continued)}} | {{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING (continued)}} | ||
Line 148: | Line 148: | ||
; [[TE|ETNAME, TETUNING]] | ; [[TE|ETNAME, TETUNING]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of EDONAME by | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning TETUNING does this. | ||
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING}} | {{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING}} | ||
{{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING (continued)}} | {{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in TETUNING (continued)}} | ||
Line 154: | Line 154: | ||
; [[EDONOI]] | ; [[EDONOI]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of EDONAME by | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | ||
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}} | {{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}} | {{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}} | ||
Line 160: | Line 160: | ||
; [[zpi|ZPINAME]] | ; [[zpi|ZPINAME]] | ||
* Step size: NNN{{c}}, octave size: NNN{{c}} | * Step size: NNN{{c}}, octave size: NNN{{c}} | ||
_ing the octave of EDONAME by | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this. | ||
{{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}} | {{Harmonics in cet|100|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME}} | ||
{{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME (continued)}} | {{Harmonics in cet|100|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in ZPINAME (continued)}} |