Mathematics of MOS: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 322238568 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 322243282 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-04-18 14:36:44 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-04-18 14:44:57 UTC</tt>.<br>
: The original revision id was <tt>322238568</tt>.<br>
: The original revision id was <tt>322243282</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 50: Line 50:


=Classification of MOS=  
=Classification of MOS=  
Since MOS scales always consist of some number of large steps and some number of small steps, they can be classified simply by the number of large steps and the number of small steps, in the form #L#s--e.g., the diatonic scale can be described as [5L2s] (5 large steps and 2 small steps) or simply [5, 2]. It is typical to ignore the period when specifying MOS scales and instead use the number of large and small steps that make up the interval of equivalence (typically assumed to be the octave--a frequency ratio of 2/1--unless otherwise specified). For instance, the diminished scale in 12-TET is typically classified as 4L4s rather than 1L1s, since there are 4 large and 4 small steps that make up an octave.
Since MOS scales always consist of some number of large steps and some number of small steps, they can be classified simply by the number of large steps and the number of small steps, in the form #L#s--e.g., the diatonic scale can be described as 5L2s (5 large steps and 2 small steps) or simply [5, 2]. It is typical to ignore the period when specifying MOS scales and instead use the number of large and small steps that make up the interval of equivalence (typically assumed to be the octave--a frequency ratio of 2/1--unless otherwise specified). For instance, the diminished scale in 12-TET is typically classified as 4L4s rather than 1L1s, since there are 4 large and 4 small steps that make up an octave.


Alternatively, we could give a mediant for a Farey pair associated to the MOS, where this mediant is less than any generator for the MOS. In other words, we use the right hand part of the Farey pair interval, which means we must replace g with 1-g and use the complementary pair if g is in the left hand side. This method is rarely used in discussions, however.
Alternatively, we could give a mediant for a Farey pair associated to the MOS, where this mediant is less than any generator for the MOS. In other words, we use the right hand part of the Farey pair interval, which means we must replace g with 1-g and use the complementary pair if g is in the left hand side. This method is rarely used in discussions, however.
Line 74: Line 74:


When R is less than 1, it represents the ratio in (logarithmic) size between the smaller and the larger step. When it is greater than 1, it is larger/smaller. By replacing g with 1 - g if necessary, we can reduce always to the case where R&gt;1 (or R&lt;1 if we prefer.)
When R is less than 1, it represents the ratio in (logarithmic) size between the smaller and the larger step. When it is greater than 1, it is larger/smaller. By replacing g with 1 - g if necessary, we can reduce always to the case where R&gt;1 (or R&lt;1 if we prefer.)


=Algorithms=  
=Algorithms=  
Line 278: Line 277:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Classification of MOS"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Classification of MOS&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Classification of MOS"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Classification of MOS&lt;/h1&gt;
  Since MOS scales always consist of some number of large steps and some number of small steps, they can be classified simply by the number of large steps and the number of small steps, in the form #L#s--e.g., the diatonic scale can be described as [5L2s] (5 large steps and 2 small steps) or simply [5, 2]. It is typical to ignore the period when specifying MOS scales and instead use the number of large and small steps that make up the interval of equivalence (typically assumed to be the octave--a frequency ratio of 2/1--unless otherwise specified). For instance, the diminished scale in 12-TET is typically classified as 4L4s rather than 1L1s, since there are 4 large and 4 small steps that make up an octave.&lt;br /&gt;
  Since MOS scales always consist of some number of large steps and some number of small steps, they can be classified simply by the number of large steps and the number of small steps, in the form #L#s--e.g., the diatonic scale can be described as 5L2s (5 large steps and 2 small steps) or simply [5, 2]. It is typical to ignore the period when specifying MOS scales and instead use the number of large and small steps that make up the interval of equivalence (typically assumed to be the octave--a frequency ratio of 2/1--unless otherwise specified). For instance, the diminished scale in 12-TET is typically classified as 4L4s rather than 1L1s, since there are 4 large and 4 small steps that make up an octave.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Alternatively, we could give a mediant for a Farey pair associated to the MOS, where this mediant is less than any generator for the MOS. In other words, we use the right hand part of the Farey pair interval, which means we must replace g with 1-g and use the complementary pair if g is in the left hand side. This method is rarely used in discussions, however.&lt;br /&gt;
Alternatively, we could give a mediant for a Farey pair associated to the MOS, where this mediant is less than any generator for the MOS. In other words, we use the right hand part of the Farey pair interval, which means we must replace g with 1-g and use the complementary pair if g is in the left hand side. This method is rarely used in discussions, however.&lt;br /&gt;
Line 302: Line 301:
&lt;br /&gt;
&lt;br /&gt;
When R is less than 1, it represents the ratio in (logarithmic) size between the smaller and the larger step. When it is greater than 1, it is larger/smaller. By replacing g with 1 - g if necessary, we can reduce always to the case where R&amp;gt;1 (or R&amp;lt;1 if we prefer.)&lt;br /&gt;
When R is less than 1, it represents the ratio in (logarithmic) size between the smaller and the larger step. When it is greater than 1, it is larger/smaller. By replacing g with 1 - g if necessary, we can reduce always to the case where R&amp;gt;1 (or R&amp;lt;1 if we prefer.)&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="Algorithms"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Algorithms&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="Algorithms"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Algorithms&lt;/h1&gt;