Map of rank-2 temperaments: Difference between revisions
Wikispaces>keenanpepper **Imported revision 250775798 - Original comment: ** |
Wikispaces>keenanpepper **Imported revision 270810942 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:keenanpepper|keenanpepper]] and made on <tt>2011- | : This revision was by author [[User:keenanpepper|keenanpepper]] and made on <tt>2011-11-01 17:17:50 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>270810942</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 119: | Line 119: | ||
* [[Hexe]] - The 2.5.7 subgroup is represented using [[6edo]], and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to [[12edo]]. | * [[Hexe]] - The 2.5.7 subgroup is represented using [[6edo]], and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to [[12edo]]. | ||
==Seven periods per octave== | ==Seven periods per octave== | ||
* [[Whitewood]] - Analogue of blackwood. The prime 3 is represented using 7edo, the generator is used for 5. | |||
* [[Jamesbond]] - The 5-limit is represented using [[7edo]], and the generator is only used for intervals of 7. | * [[Jamesbond]] - The 5-limit is represented using [[7edo]], and the generator is only used for intervals of 7. | ||
* [[Sevond]] - 10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp. | |||
* [[Absurdity]] - A complex temperament (perhaps "absurdly" so). | |||
==Eight periods per octave== | ==Eight periods per octave== | ||
* [[Octoid]] - 16-cent generator, sub-cent accuracy. | * [[Octoid]] - 16-cent generator, sub-cent accuracy. | ||
Line 128: | Line 131: | ||
Temperaments in this family are interesting because they can be thought of as [[12edo]] with microtonal alterations. | Temperaments in this family are interesting because they can be thought of as [[12edo]] with microtonal alterations. | ||
* [[Compton]] - 3-limit as in 12edo; intervals of 5 are off by one generator. In the 7-limit (sometimes called [[waage]]), intervals of 7 are off by two generators. In the 11-limit, intervals of 11 are off by 3 generators. Thinking of [[72edo]] might make this more concrete. | * [[Compton]] - 3-limit as in 12edo; intervals of 5 are off by one generator. In the 7-limit (sometimes called [[waage]]), intervals of 7 are off by two generators. In the 11-limit, intervals of 11 are off by 3 generators. Thinking of [[72edo]] might make this more concrete. | ||
* [[Catler]] - 5-limit as in 12edo; intervals of 7 are off by one generator.</pre></div> | * [[Catler]] - 5-limit as in 12edo; intervals of 7 are off by one generator. | ||
* [[Atomic]] - Does not temper out the Pythagorean comma, so 3/2 is actually one generator sharp of its 12edo value. Extremely accurate.</pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Map of rank-2 temperaments</title></head><body>This is intended to be a map of all interesting linear (rank-2) temperaments that are compatible with octave equivalence. The only linear temperaments not appearing here should be ones like <a class="wiki_link" href="/Bohlen-Pierce">Bohlen-Pierce</a> that completely lack octaves.<br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Map of rank-2 temperaments</title></head><body>This is intended to be a map of all interesting linear (rank-2) temperaments that are compatible with octave equivalence. The only linear temperaments not appearing here should be ones like <a class="wiki_link" href="/Bohlen-Pierce">Bohlen-Pierce</a> that completely lack octaves.<br /> | ||
Line 3,235: | Line 3,239: | ||
<ul><li><a class="wiki_link" href="/Blackwood">Blackwood</a>/<a class="wiki_link" href="/blacksmith">blacksmith</a> - The prime 3, and in blacksmith also 7, is represented using <a class="wiki_link" href="/5edo">5edo</a>. The generator gets you to all intervals of 5.</li></ul><!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="x-Six periods per octave"></a><!-- ws:end:WikiTextHeadingRule:10 -->Six periods per octave</h2> | <ul><li><a class="wiki_link" href="/Blackwood">Blackwood</a>/<a class="wiki_link" href="/blacksmith">blacksmith</a> - The prime 3, and in blacksmith also 7, is represented using <a class="wiki_link" href="/5edo">5edo</a>. The generator gets you to all intervals of 5.</li></ul><!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="x-Six periods per octave"></a><!-- ws:end:WikiTextHeadingRule:10 -->Six periods per octave</h2> | ||
<ul><li><a class="wiki_link" href="/Hexe">Hexe</a> - The 2.5.7 subgroup is represented using <a class="wiki_link" href="/6edo">6edo</a>, and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to <a class="wiki_link" href="/12edo">12edo</a>.</li></ul><!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="x-Seven periods per octave"></a><!-- ws:end:WikiTextHeadingRule:12 -->Seven periods per octave</h2> | <ul><li><a class="wiki_link" href="/Hexe">Hexe</a> - The 2.5.7 subgroup is represented using <a class="wiki_link" href="/6edo">6edo</a>, and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to <a class="wiki_link" href="/12edo">12edo</a>.</li></ul><!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="x-Seven periods per octave"></a><!-- ws:end:WikiTextHeadingRule:12 -->Seven periods per octave</h2> | ||
<ul><li><a class="wiki_link" href="/Jamesbond">Jamesbond</a> - The 5-limit is represented using <a class="wiki_link" href="/7edo">7edo</a>, and the generator is only used for intervals of 7.</li></ul><!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="x-Eight periods per octave"></a><!-- ws:end:WikiTextHeadingRule:14 -->Eight periods per octave</h2> | <ul><li><a class="wiki_link" href="/Whitewood">Whitewood</a> - Analogue of blackwood. The prime 3 is represented using 7edo, the generator is used for 5.</li><li><a class="wiki_link" href="/Jamesbond">Jamesbond</a> - The 5-limit is represented using <a class="wiki_link" href="/7edo">7edo</a>, and the generator is only used for intervals of 7.</li><li><a class="wiki_link" href="/Sevond">Sevond</a> - 10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp.</li><li><a class="wiki_link" href="/Absurdity">Absurdity</a> - A complex temperament (perhaps &quot;absurdly&quot; so).</li></ul><!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="x-Eight periods per octave"></a><!-- ws:end:WikiTextHeadingRule:14 -->Eight periods per octave</h2> | ||
<ul><li><a class="wiki_link" href="/Octoid">Octoid</a> - 16-cent generator, sub-cent accuracy.</li></ul><!-- ws:start:WikiTextHeadingRule:16:&lt;h2&gt; --><h2 id="toc8"><a name="x-Nine periods per octave"></a><!-- ws:end:WikiTextHeadingRule:16 -->Nine periods per octave</h2> | <ul><li><a class="wiki_link" href="/Octoid">Octoid</a> - 16-cent generator, sub-cent accuracy.</li></ul><!-- ws:start:WikiTextHeadingRule:16:&lt;h2&gt; --><h2 id="toc8"><a name="x-Nine periods per octave"></a><!-- ws:end:WikiTextHeadingRule:16 -->Nine periods per octave</h2> | ||
<ul><li><a class="wiki_link" href="/Ennealimmal">Ennealimmal</a> - The generator is 49.02 cents, and don't forget the &quot;.02&quot; because it really is that accurate.</li></ul><!-- ws:start:WikiTextHeadingRule:18:&lt;h2&gt; --><h2 id="toc9"><a name="x-Twelve periods per octave"></a><!-- ws:end:WikiTextHeadingRule:18 -->Twelve periods per octave</h2> | <ul><li><a class="wiki_link" href="/Ennealimmal">Ennealimmal</a> - The generator is 49.02 cents, and don't forget the &quot;.02&quot; because it really is that accurate.</li></ul><!-- ws:start:WikiTextHeadingRule:18:&lt;h2&gt; --><h2 id="toc9"><a name="x-Twelve periods per octave"></a><!-- ws:end:WikiTextHeadingRule:18 -->Twelve periods per octave</h2> | ||
See also: <a class="wiki_link" href="/Pythagorean%20family">Pythagorean family</a><br /> | See also: <a class="wiki_link" href="/Pythagorean%20family">Pythagorean family</a><br /> | ||
Temperaments in this family are interesting because they can be thought of as <a class="wiki_link" href="/12edo">12edo</a> with microtonal alterations.<br /> | Temperaments in this family are interesting because they can be thought of as <a class="wiki_link" href="/12edo">12edo</a> with microtonal alterations.<br /> | ||
<ul><li><a class="wiki_link" href="/Compton">Compton</a> - 3-limit as in 12edo; intervals of 5 are off by one generator. In the 7-limit (sometimes called <a class="wiki_link" href="/waage">waage</a>), intervals of 7 are off by two generators. In the 11-limit, intervals of 11 are off by 3 generators. Thinking of <a class="wiki_link" href="/72edo">72edo</a> might make this more concrete.</li><li><a class="wiki_link" href="/Catler">Catler</a> - 5-limit as in 12edo; intervals of 7 are off by one generator.</li></ul></body></html></pre></div> | <ul><li><a class="wiki_link" href="/Compton">Compton</a> - 3-limit as in 12edo; intervals of 5 are off by one generator. In the 7-limit (sometimes called <a class="wiki_link" href="/waage">waage</a>), intervals of 7 are off by two generators. In the 11-limit, intervals of 11 are off by 3 generators. Thinking of <a class="wiki_link" href="/72edo">72edo</a> might make this more concrete.</li><li><a class="wiki_link" href="/Catler">Catler</a> - 5-limit as in 12edo; intervals of 7 are off by one generator.</li><li><a class="wiki_link" href="/Atomic">Atomic</a> - Does not temper out the Pythagorean comma, so 3/2 is actually one generator sharp of its 12edo value. Extremely accurate.</li></ul></body></html></pre></div> |