Map of rank-2 temperaments: Difference between revisions

Wikispaces>keenanpepper
**Imported revision 250775798 - Original comment: **
Wikispaces>keenanpepper
**Imported revision 270810942 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:keenanpepper|keenanpepper]] and made on <tt>2011-09-05 02:49:20 UTC</tt>.<br>
: This revision was by author [[User:keenanpepper|keenanpepper]] and made on <tt>2011-11-01 17:17:50 UTC</tt>.<br>
: The original revision id was <tt>250775798</tt>.<br>
: The original revision id was <tt>270810942</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 119: Line 119:
* [[Hexe]] - The 2.5.7 subgroup is represented using [[6edo]], and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to [[12edo]].
* [[Hexe]] - The 2.5.7 subgroup is represented using [[6edo]], and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to [[12edo]].
==Seven periods per octave==  
==Seven periods per octave==  
* [[Whitewood]] - Analogue of blackwood. The prime 3 is represented using 7edo, the generator is used for 5.
* [[Jamesbond]] - The 5-limit is represented using [[7edo]], and the generator is only used for intervals of 7.
* [[Jamesbond]] - The 5-limit is represented using [[7edo]], and the generator is only used for intervals of 7.
* [[Sevond]] - 10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp.
* [[Absurdity]] - A complex temperament (perhaps "absurdly" so).
==Eight periods per octave==  
==Eight periods per octave==  
* [[Octoid]] - 16-cent generator, sub-cent accuracy.
* [[Octoid]] - 16-cent generator, sub-cent accuracy.
Line 128: Line 131:
Temperaments in this family are interesting because they can be thought of as [[12edo]] with microtonal alterations.
Temperaments in this family are interesting because they can be thought of as [[12edo]] with microtonal alterations.
* [[Compton]] - 3-limit as in 12edo; intervals of 5 are off by one generator. In the 7-limit (sometimes called [[waage]]), intervals of 7 are off by two generators. In the 11-limit, intervals of 11 are off by 3 generators. Thinking of [[72edo]] might make this more concrete.
* [[Compton]] - 3-limit as in 12edo; intervals of 5 are off by one generator. In the 7-limit (sometimes called [[waage]]), intervals of 7 are off by two generators. In the 11-limit, intervals of 11 are off by 3 generators. Thinking of [[72edo]] might make this more concrete.
* [[Catler]] - 5-limit as in 12edo; intervals of 7 are off by one generator.</pre></div>
* [[Catler]] - 5-limit as in 12edo; intervals of 7 are off by one generator.
* [[Atomic]] - Does not temper out the Pythagorean comma, so 3/2 is actually one generator sharp of its 12edo value. Extremely accurate.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Map of rank-2 temperaments&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This is intended to be a map of all interesting linear (rank-2) temperaments that are compatible with octave equivalence. The only linear temperaments not appearing here should be ones like &lt;a class="wiki_link" href="/Bohlen-Pierce"&gt;Bohlen-Pierce&lt;/a&gt; that completely lack octaves.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Map of rank-2 temperaments&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This is intended to be a map of all interesting linear (rank-2) temperaments that are compatible with octave equivalence. The only linear temperaments not appearing here should be ones like &lt;a class="wiki_link" href="/Bohlen-Pierce"&gt;Bohlen-Pierce&lt;/a&gt; that completely lack octaves.&lt;br /&gt;
Line 3,235: Line 3,239:
  &lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Blackwood"&gt;Blackwood&lt;/a&gt;/&lt;a class="wiki_link" href="/blacksmith"&gt;blacksmith&lt;/a&gt; - The prime 3, and in blacksmith also 7, is represented using &lt;a class="wiki_link" href="/5edo"&gt;5edo&lt;/a&gt;. The generator gets you to all intervals of 5.&lt;/li&gt;&lt;/ul&gt;&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="x-Six periods per octave"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Six periods per octave&lt;/h2&gt;
  &lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Blackwood"&gt;Blackwood&lt;/a&gt;/&lt;a class="wiki_link" href="/blacksmith"&gt;blacksmith&lt;/a&gt; - The prime 3, and in blacksmith also 7, is represented using &lt;a class="wiki_link" href="/5edo"&gt;5edo&lt;/a&gt;. The generator gets you to all intervals of 5.&lt;/li&gt;&lt;/ul&gt;&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="x-Six periods per octave"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Six periods per octave&lt;/h2&gt;
  &lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Hexe"&gt;Hexe&lt;/a&gt; - The 2.5.7 subgroup is represented using &lt;a class="wiki_link" href="/6edo"&gt;6edo&lt;/a&gt;, and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;.&lt;/li&gt;&lt;/ul&gt;&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="x-Seven periods per octave"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Seven periods per octave&lt;/h2&gt;
  &lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Hexe"&gt;Hexe&lt;/a&gt; - The 2.5.7 subgroup is represented using &lt;a class="wiki_link" href="/6edo"&gt;6edo&lt;/a&gt;, and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;.&lt;/li&gt;&lt;/ul&gt;&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="x-Seven periods per octave"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Seven periods per octave&lt;/h2&gt;
  &lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Jamesbond"&gt;Jamesbond&lt;/a&gt; - The 5-limit is represented using &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;, and the generator is only used for intervals of 7.&lt;/li&gt;&lt;/ul&gt;&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="x-Eight periods per octave"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Eight periods per octave&lt;/h2&gt;
  &lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Whitewood"&gt;Whitewood&lt;/a&gt; - Analogue of blackwood. The prime 3 is represented using 7edo, the generator is used for 5.&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Jamesbond"&gt;Jamesbond&lt;/a&gt; - The 5-limit is represented using &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;, and the generator is only used for intervals of 7.&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Sevond"&gt;Sevond&lt;/a&gt; - 10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp.&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Absurdity"&gt;Absurdity&lt;/a&gt; - A complex temperament (perhaps &amp;quot;absurdly&amp;quot; so).&lt;/li&gt;&lt;/ul&gt;&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="x-Eight periods per octave"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Eight periods per octave&lt;/h2&gt;
  &lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Octoid"&gt;Octoid&lt;/a&gt; - 16-cent generator, sub-cent accuracy.&lt;/li&gt;&lt;/ul&gt;&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="x-Nine periods per octave"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Nine periods per octave&lt;/h2&gt;
  &lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Octoid"&gt;Octoid&lt;/a&gt; - 16-cent generator, sub-cent accuracy.&lt;/li&gt;&lt;/ul&gt;&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="x-Nine periods per octave"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Nine periods per octave&lt;/h2&gt;
  &lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Ennealimmal"&gt;Ennealimmal&lt;/a&gt; - The generator is 49.02 cents, and don't forget the &amp;quot;.02&amp;quot; because it really is that accurate.&lt;/li&gt;&lt;/ul&gt;&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="x-Twelve periods per octave"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;Twelve periods per octave&lt;/h2&gt;
  &lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Ennealimmal"&gt;Ennealimmal&lt;/a&gt; - The generator is 49.02 cents, and don't forget the &amp;quot;.02&amp;quot; because it really is that accurate.&lt;/li&gt;&lt;/ul&gt;&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="x-Twelve periods per octave"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;Twelve periods per octave&lt;/h2&gt;
  See also: &lt;a class="wiki_link" href="/Pythagorean%20family"&gt;Pythagorean family&lt;/a&gt;&lt;br /&gt;
  See also: &lt;a class="wiki_link" href="/Pythagorean%20family"&gt;Pythagorean family&lt;/a&gt;&lt;br /&gt;
Temperaments in this family are interesting because they can be thought of as &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt; with microtonal alterations.&lt;br /&gt;
Temperaments in this family are interesting because they can be thought of as &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt; with microtonal alterations.&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Compton"&gt;Compton&lt;/a&gt; - 3-limit as in 12edo; intervals of 5 are off by one generator. In the 7-limit (sometimes called &lt;a class="wiki_link" href="/waage"&gt;waage&lt;/a&gt;), intervals of 7 are off by two generators. In the 11-limit, intervals of 11 are off by 3 generators. Thinking of &lt;a class="wiki_link" href="/72edo"&gt;72edo&lt;/a&gt; might make this more concrete.&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Catler"&gt;Catler&lt;/a&gt; - 5-limit as in 12edo; intervals of 7 are off by one generator.&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;ul&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Compton"&gt;Compton&lt;/a&gt; - 3-limit as in 12edo; intervals of 5 are off by one generator. In the 7-limit (sometimes called &lt;a class="wiki_link" href="/waage"&gt;waage&lt;/a&gt;), intervals of 7 are off by two generators. In the 11-limit, intervals of 11 are off by 3 generators. Thinking of &lt;a class="wiki_link" href="/72edo"&gt;72edo&lt;/a&gt; might make this more concrete.&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Catler"&gt;Catler&lt;/a&gt; - 5-limit as in 12edo; intervals of 7 are off by one generator.&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Atomic"&gt;Atomic&lt;/a&gt; - Does not temper out the Pythagorean comma, so 3/2 is actually one generator sharp of its 12edo value. Extremely accurate.&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>