Map of rank-2 temperaments: Difference between revisions
Wikispaces>Kosmorsky **Imported revision 319165762 - Original comment: ** |
Wikispaces>Kosmorsky **Imported revision 319166072 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:Kosmorsky|Kosmorsky]] and made on <tt>2012-04-10 14: | : This revision was by author [[User:Kosmorsky|Kosmorsky]] and made on <tt>2012-04-10 14:08:00 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>319166072</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 118: | Line 118: | ||
==Five periods per octave== | ==Five periods per octave== | ||
* [[Blackwood]]/[[blacksmith]] - The prime 3, and in blacksmith also 7, is represented using [[5edo]]. The generator gets you to all intervals of 5. | * [[Blackwood]]/[[blacksmith]] - The prime 3, and in blacksmith also 7, is represented using [[5edo]]. The generator gets you to all intervals of 5. | ||
* Elderthing - generator of phi. Two generators up to 3, two down to 7, other | * Elderthing - generator of phi. Two generators up to 3, two down to 7, other primes are more complex. (One generator up or one down are ambiguous 13.) | ||
==Six periods per octave== | ==Six periods per octave== | ||
* [[Hexe]] - The 2.5.7 subgroup is represented using [[6edo]], and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to [[12edo]]. | * [[Hexe]] - The 2.5.7 subgroup is represented using [[6edo]], and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to [[12edo]]. | ||
Line 3,300: | Line 3,300: | ||
<!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="x-Five periods per octave"></a><!-- ws:end:WikiTextHeadingRule:8 -->Five periods per octave</h2> | <!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="x-Five periods per octave"></a><!-- ws:end:WikiTextHeadingRule:8 -->Five periods per octave</h2> | ||
<ul><li><a class="wiki_link" href="/Blackwood">Blackwood</a>/<a class="wiki_link" href="/blacksmith">blacksmith</a> - The prime 3, and in blacksmith also 7, is represented using <a class="wiki_link" href="/5edo">5edo</a>. The generator gets you to all intervals of 5.</li><li>Elderthing - generator of phi. Two generators up to 3, two down to 7, other | <ul><li><a class="wiki_link" href="/Blackwood">Blackwood</a>/<a class="wiki_link" href="/blacksmith">blacksmith</a> - The prime 3, and in blacksmith also 7, is represented using <a class="wiki_link" href="/5edo">5edo</a>. The generator gets you to all intervals of 5.</li><li>Elderthing - generator of phi. Two generators up to 3, two down to 7, other primes are more complex. (One generator up or one down are ambiguous 13.)</li></ul><!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="x-Six periods per octave"></a><!-- ws:end:WikiTextHeadingRule:10 -->Six periods per octave</h2> | ||
<ul><li><a class="wiki_link" href="/Hexe">Hexe</a> - The 2.5.7 subgroup is represented using <a class="wiki_link" href="/6edo">6edo</a>, and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to <a class="wiki_link" href="/12edo">12edo</a>.</li></ul><!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="x-Seven periods per octave"></a><!-- ws:end:WikiTextHeadingRule:12 -->Seven periods per octave</h2> | <ul><li><a class="wiki_link" href="/Hexe">Hexe</a> - The 2.5.7 subgroup is represented using <a class="wiki_link" href="/6edo">6edo</a>, and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to <a class="wiki_link" href="/12edo">12edo</a>.</li></ul><!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><a name="x-Seven periods per octave"></a><!-- ws:end:WikiTextHeadingRule:12 -->Seven periods per octave</h2> | ||
<ul><li><a class="wiki_link" href="/Whitewood">Whitewood</a> - Analogue of blackwood. The prime 3 is represented using 7edo, the generator is used for 5.</li><li><a class="wiki_link" href="/Jamesbond">Jamesbond</a>/<a class="wiki_link" href="/septimal">septimal</a> - The 5-limit (and in septimal the prime 11) is represented using <a class="wiki_link" href="/7edo">7edo</a>, and the generator is only used for intervals of 7.</li><li><a class="wiki_link" href="/Sevond">Sevond</a> - 10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp.</li><li><a class="wiki_link" href="/Absurdity">Absurdity</a> - A complex temperament (perhaps &quot;absurdly&quot; so).</li></ul><!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="x-Eight periods per octave"></a><!-- ws:end:WikiTextHeadingRule:14 -->Eight periods per octave</h2> | <ul><li><a class="wiki_link" href="/Whitewood">Whitewood</a> - Analogue of blackwood. The prime 3 is represented using 7edo, the generator is used for 5.</li><li><a class="wiki_link" href="/Jamesbond">Jamesbond</a>/<a class="wiki_link" href="/septimal">septimal</a> - The 5-limit (and in septimal the prime 11) is represented using <a class="wiki_link" href="/7edo">7edo</a>, and the generator is only used for intervals of 7.</li><li><a class="wiki_link" href="/Sevond">Sevond</a> - 10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp.</li><li><a class="wiki_link" href="/Absurdity">Absurdity</a> - A complex temperament (perhaps &quot;absurdly&quot; so).</li></ul><!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="x-Eight periods per octave"></a><!-- ws:end:WikiTextHeadingRule:14 -->Eight periods per octave</h2> |