Logarithmic approximants: Difference between revisions
Wikispaces>MartinGough **Imported revision 541426660 - Original comment: ** |
Wikispaces>MartinGough **Imported revision 541434588 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-02-19 | : This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-02-19 09:40:50 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>541434588</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">WORK IN PROGRESS | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">WORK IN PROGRESS | ||
**<span style="font-size: 15px;">Introduction</span>** | **<span style="font-size: 15px;">Introduction</span>** | ||
<span style="font-family: Arial,Helvetica,sans-serif;">The term //logarithmic approximant//[[xenharmonic/Mike's Lecture on Vector Spaces and Dual Spaces#ref1|{1}]] (or //approximant// for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as</span> | <span style="font-family: Arial,Helvetica,sans-serif;">The term //logarithmic approximant//[[xenharmonic/Mike's Lecture on Vector Spaces and Dual Spaces#ref1|{1}]] (or //approximant// for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as</span> | ||
* <span style="font-family: Arial,Helvetica,sans-serif;">Why | * <span style="font-family: Arial,Helvetica,sans-serif;">Why do certain temperaments (such as 12edo) provide a reasonably accurate approximation to 5-limit just intonation?</span> | ||
* <span style="font-family: Arial,Helvetica,sans-serif;">Why are certain commas small, and roughly how small are they?</span> | * <span style="font-family: Arial,Helvetica,sans-serif;">Why are certain commas small, and roughly how small are they?</span> | ||
* <span style="font-family: Arial,Helvetica,sans-serif;">Why is the ratio of the perfect fifth to the perfect fourth close to √2?</span> | * <span style="font-family: Arial,Helvetica,sans-serif;">Why is the ratio of the perfect fifth to the perfect fourth close to √2?</span> | ||
Line 50: | Line 51: | ||
[[math]] | [[math]] | ||
<span style="color: #ffffff;">######</span> = (frequency difference) / (frequency sum) | <span style="color: #ffffff;">######</span> = (frequency difference) / (frequency sum) | ||
<span style="color: #ffffff;">######</span> =½ (frequency difference) / (mean frequency) | <span style="color: #ffffff;">######</span> =½ (frequency difference) / (mean frequency) | ||
<span style="font-family: Georgia,serif; font-size: 110%;">//r// </span>can be retrieved from <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span> using the inverse relation | <span style="font-family: Georgia,serif; font-size: 110%;">//r// </span>can be retrieved from <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span> using the inverse relation | ||
Line 58: | Line 58: | ||
**<span style="font-size: 15px;">Properties of bimodular approximants</span>** | **<span style="font-size: 15px;">Properties of bimodular approximants</span>** | ||
When <span style="font-family: Georgia,serif; font-size: 110%;">//r// </span>is small, <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span> provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others. | When <span style="font-family: Georgia,serif; font-size: 110%;">//r// </span>is small, <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span> provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others. | ||
Noting that the exact size (in dineper units) of the interval with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;">//r//</span> is | Noting that the exact size (in dineper units) of the interval with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;">//r//</span> is | ||
Line 70: | Line 69: | ||
which shows that <span style="font-family: Georgia,serif; font-size: 110%;">//v// ≈ //J//</span> and provides an indication of the size and sign of the error involved in this approximation. | which shows that <span style="font-family: Georgia,serif; font-size: 110%;">//v// ≈ //J//</span> and provides an indication of the size and sign of the error involved in this approximation. | ||
//<span style="font-family: Georgia;">J</span>// can be expressed in terms of <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span> as | //<span style="font-family: Georgia;">J</span>// can be expressed in terms of <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span> as | ||
[[math]] | [[math]] | ||
\qquad J = \tanh^ | \qquad J = \tanh^{-1}{v} = v + \tfrac{1}{3}v^3 + \tfrac{1}{5}v^5 - ... | ||
[[math]] | [[math]] | ||
The function <span style="font-family: Georgia,serif; font-size: 110%;">//v(r)//</span> is the order (1,1) Padé approximant of the function <span style="font-family: Georgia,serif; font-size: 110%;"> //J(r) =//½ ln //r// </span> in the region of //r// = 1, which has the property of matching the function value and its first and second derivatives at this value of //r//. The bimodular approximant function is thus accurate to second order in //r// – 1. | The function <span style="font-family: Georgia,serif; font-size: 110%;">//v(r)//</span> is the order (1,1) Padé approximant of the function <span style="font-family: Georgia,serif; font-size: 110%;"> //J(r) =//½ ln //r// </span> in the region of //r// = 1, which has the property of matching the function value and its first and second derivatives at this value of //r//. The bimodular approximant function is thus accurate to second order in //r// – 1. | ||
As an example, the size of the perfect fifth (in dNp units) is | As an example, the size of the perfect fifth (in dNp units) is | ||
[[math]] | [[math]] | ||
\qquad J = \tfrac{1}{2} \ln{3/2} = 0.20273... | \qquad J = \tfrac{1}{2} \ln{3/2} = 0.20273... | ||
[[math]] | [[math]] | ||
The bimodular approximant for this interval (r = 3/2) is | The bimodular approximant for this interval (r = 3/2) is | ||
[[math]] | [[math]] | ||
\qquad v = (3/2 – 1)/(3/2 + 1) = (3 – 2)/(3 + 2) = 1/5 = 0.2 | \qquad v = (3/2 – 1)/(3/2 + 1) = (3 – 2)/(3 + 2) = 1/5 = 0.2 | ||
[[math]] | [[math]] | ||
and the Taylor series indicates that the error in this value is about | and the Taylor series indicates that the error in this value is about | ||
[[math]] | [[math]] | ||
Line 98: | Line 89: | ||
The figure shows the approximants of the first 31 superparticular intervals, which are reciprocals of odd integers. | The figure shows the approximants of the first 31 superparticular intervals, which are reciprocals of odd integers. | ||
<Figure> | <Figure> | ||
If <span style="font-family: Georgia,serif; font-size: 110%;">//v[J]// </span>denotes the bimodular approximant of an interval <span style="font-family: Georgia,serif; font-size: 110%;">//J//</span> with frequency ratio //<span style="font-family: Georgia,serif; font-size: 110%;">r</span>//, | |||
[[math]] | [[math]] | ||
\qquad v[-J] = -v[J] | \qquad v[-J] = -v[J] \\ | ||
\qquad v[J_1 +J_2] = \frac{v_1+v_2}{1+v_1 v_2} | \qquad v[J_1 +J_2] = \frac{v_1+v_2}{1+v_1 v_2} | ||
[[math]] | [[math]] | ||
This last result is equivalent to the identity expressing tanh( | This last result is equivalent to the identity expressing <span style="font-family: Georgia,serif; font-size: 110%;">tanh(//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1 + </span><span style="font-family: Georgia,serif; font-size: 110%;">//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span><span style="font-family: Georgia,serif;">)</span> in terms of <span style="font-family: Georgia,serif; font-size: 110%;">tanh(//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span><span style="font-family: Georgia,serif; font-size: 110%;">)</span> and <span style="font-family: Georgia,serif; font-size: 110%;">tanh(//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span><span style="font-family: Georgia,serif; font-size: 110%;">).</span> | ||
**<span style="font-size: 20px;">Bimodular approximants and equal temperaments</span>** | **<span style="font-size: 20px;">Bimodular approximants and equal temperaments</span>** | ||
Line 167: | Line 158: | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Logarithmic approximants</title></head><body>WORK IN PROGRESS<br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Logarithmic approximants</title></head><body>WORK IN PROGRESS<br /> | ||
<br /> | |||
<strong><span style="font-size: 15px;">Introduction</span></strong><br /> | <strong><span style="font-size: 15px;">Introduction</span></strong><br /> | ||
<span style="font-family: Arial,Helvetica,sans-serif;">The term <em>logarithmic approximant</em><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Mike%27s%20Lecture%20on%20Vector%20Spaces%20and%20Dual%20Spaces#ref1">{1}</a> (or <em>approximant</em> for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as</span><br /> | <span style="font-family: Arial,Helvetica,sans-serif;">The term <em>logarithmic approximant</em><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Mike%27s%20Lecture%20on%20Vector%20Spaces%20and%20Dual%20Spaces#ref1">{1}</a> (or <em>approximant</em> for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as</span><br /> | ||
<ul><li><span style="font-family: Arial,Helvetica,sans-serif;">Why | <ul><li><span style="font-family: Arial,Helvetica,sans-serif;">Why do certain temperaments (such as 12edo) provide a reasonably accurate approximation to 5-limit just intonation?</span></li><li><span style="font-family: Arial,Helvetica,sans-serif;">Why are certain commas small, and roughly how small are they?</span></li><li><span style="font-family: Arial,Helvetica,sans-serif;">Why is the ratio of the perfect fifth to the perfect fourth close to √2?</span></li></ul><br /> | ||
The exact size, in cents, of an interval with frequency ratio <em>r</em> is<br /> | The exact size, in cents, of an interval with frequency ratio <em>r</em> is<br /> | ||
<!-- ws:start:WikiTextMathRule:0: | <!-- ws:start:WikiTextMathRule:0: | ||
Line 214: | Line 206: | ||
</script><!-- ws:end:WikiTextMathRule:4 --><br /> | </script><!-- ws:end:WikiTextMathRule:4 --><br /> | ||
<span style="color: #ffffff;">######</span> = (frequency difference) / (frequency sum)<br /> | <span style="color: #ffffff;">######</span> = (frequency difference) / (frequency sum)<br /> | ||
<span style="color: #ffffff;">######</span> =½ (frequency difference) / (mean frequency)<br /> | <span style="color: #ffffff;">######</span> =½ (frequency difference) / (mean frequency)<br /> | ||
<span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em> </span>can be retrieved from <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span> using the inverse relation<br /> | <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em> </span>can be retrieved from <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span> using the inverse relation<br /> | ||
Line 223: | Line 214: | ||
<br /> | <br /> | ||
<strong><span style="font-size: 15px;">Properties of bimodular approximants</span></strong><br /> | <strong><span style="font-size: 15px;">Properties of bimodular approximants</span></strong><br /> | ||
When <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em> </span>is small, <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span> provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others.<br /> | When <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em> </span>is small, <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span> provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others.<br /> | ||
Noting that the exact size (in dineper units) of the interval with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em></span> is<br /> | Noting that the exact size (in dineper units) of the interval with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em></span> is<br /> | ||
Line 237: | Line 227: | ||
which shows that <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em> ≈ <em>J</em></span> and provides an indication of the size and sign of the error involved in this approximation.<br /> | which shows that <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em> ≈ <em>J</em></span> and provides an indication of the size and sign of the error involved in this approximation.<br /> | ||
<em><span style="font-family: Georgia;">J</span></em> can be expressed in terms of <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span> as<br /> | <em><span style="font-family: Georgia;">J</span></em> can be expressed in terms of <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span> as<br /> | ||
<!-- ws:start:WikiTextMathRule:8: | <!-- ws:start:WikiTextMathRule:8: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
\qquad J = \tanh^ | \qquad J = \tanh^{-1}{v} = v + \tfrac{1}{3}v^3 + \tfrac{1}{5}v^5 - ...&lt;br/&gt;[[math]] | ||
--><script type="math/tex">\qquad J = \tanh^ | --><script type="math/tex">\qquad J = \tanh^{-1}{v} = v + \tfrac{1}{3}v^3 + \tfrac{1}{5}v^5 - ...</script><!-- ws:end:WikiTextMathRule:8 --><br /> | ||
<br /> | |||
The function <span style="font-family: Georgia,serif; font-size: 110%;"><em>v(r)</em></span> is the order (1,1) Padé approximant of the function <span style="font-family: Georgia,serif; font-size: 110%;"> <em>J(r) =</em>½ ln <em>r</em> </span> in the region of <em>r</em> = 1, which has the property of matching the function value and its first and second derivatives at this value of <em>r</em>. The bimodular approximant function is thus accurate to second order in <em>r</em> – 1.<br /> | The function <span style="font-family: Georgia,serif; font-size: 110%;"><em>v(r)</em></span> is the order (1,1) Padé approximant of the function <span style="font-family: Georgia,serif; font-size: 110%;"> <em>J(r) =</em>½ ln <em>r</em> </span> in the region of <em>r</em> = 1, which has the property of matching the function value and its first and second derivatives at this value of <em>r</em>. The bimodular approximant function is thus accurate to second order in <em>r</em> – 1.<br /> | ||
<br /> | <br /> | ||
As an example, the size of the perfect fifth (in dNp units) is<br /> | As an example, the size of the perfect fifth (in dNp units) is<br /> | ||
<!-- ws:start:WikiTextMathRule:9: | <!-- ws:start:WikiTextMathRule:9: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
\qquad J = \tfrac{1}{2} \ln{3/2} = 0.20273... | \qquad J = \tfrac{1}{2} \ln{3/2} = 0.20273...&lt;br/&gt;[[math]] | ||
&lt;br/&gt;[[math]] | --><script type="math/tex">\qquad J = \tfrac{1}{2} \ln{3/2} = 0.20273...</script><!-- ws:end:WikiTextMathRule:9 --><br /> | ||
--><script type="math/tex">\qquad J = \tfrac{1}{2} \ln{3/2} = 0.20273... | |||
</script><!-- ws:end:WikiTextMathRule:9 --> | |||
<br /> | |||
The bimodular approximant for this interval (r = 3/2) is<br /> | The bimodular approximant for this interval (r = 3/2) is<br /> | ||
<!-- ws:start:WikiTextMathRule:10: | <!-- ws:start:WikiTextMathRule:10: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
\qquad v = (3/2 – 1)/(3/2 + 1) = (3 – 2)/(3 + 2) = 1/5 = 0.2&lt;br/&gt;[[math]] | \qquad v = (3/2 – 1)/(3/2 + 1) = (3 – 2)/(3 + 2) = 1/5 = 0.2&lt;br/&gt;[[math]] | ||
--><script type="math/tex">\qquad v = (3/2 – 1)/(3/2 + 1) = (3 – 2)/(3 + 2) = 1/5 = 0.2</script><!-- ws:end:WikiTextMathRule:10 --><br /> | --><script type="math/tex">\qquad v = (3/2 – 1)/(3/2 + 1) = (3 – 2)/(3 + 2) = 1/5 = 0.2</script><!-- ws:end:WikiTextMathRule:10 --><br /> | ||
and the Taylor series indicates that the error in this value is about<br /> | and the Taylor series indicates that the error in this value is about<br /> | ||
<!-- ws:start:WikiTextMathRule:11: | <!-- ws:start:WikiTextMathRule:11: | ||
Line 270: | Line 251: | ||
The figure shows the approximants of the first 31 superparticular intervals, which are reciprocals of odd integers.<br /> | The figure shows the approximants of the first 31 superparticular intervals, which are reciprocals of odd integers.<br /> | ||
&lt;Figure&gt;<br /> | &lt;Figure&gt;<br /> | ||
<br /> | <br /> | ||
If <span style="font-family: Georgia,serif; font-size: 110%;"><em>v[J]</em> </span>denotes the bimodular approximant of an interval <span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span> with frequency ratio <em><span style="font-family: Georgia,serif; font-size: 110%;">r</span></em>,<br /> | |||
<!-- ws:start:WikiTextMathRule:12: | <!-- ws:start:WikiTextMathRule:12: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
\qquad v[-J] = -v[J]&lt;br /&gt; | \qquad v[-J] = -v[J] \\&lt;br /&gt; | ||
\qquad v[J_1 +J_2] = \frac{v_1+v_2}{1+v_1 v_2}&lt;br/&gt;[[math]] | \qquad v[J_1 +J_2] = \frac{v_1+v_2}{1+v_1 v_2}&lt;br/&gt;[[math]] | ||
--><script type="math/tex">\qquad v[-J] = -v[J] | --><script type="math/tex">\qquad v[-J] = -v[J] \\ | ||
\qquad v[J_1 +J_2] = \frac{v_1+v_2}{1+v_1 v_2}</script><!-- ws:end:WikiTextMathRule:12 --><br /> | \qquad v[J_1 +J_2] = \frac{v_1+v_2}{1+v_1 v_2}</script><!-- ws:end:WikiTextMathRule:12 --><br /> | ||
This last result is equivalent to the identity expressing tanh( | This last result is equivalent to the identity expressing <span style="font-family: Georgia,serif; font-size: 110%;">tanh(<em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1 + </span><span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span><span style="font-family: Georgia,serif;">)</span> in terms of <span style="font-family: Georgia,serif; font-size: 110%;">tanh(<em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span><span style="font-family: Georgia,serif; font-size: 110%;">)</span> and <span style="font-family: Georgia,serif; font-size: 110%;">tanh(<em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span><span style="font-family: Georgia,serif; font-size: 110%;">).</span><br /> | ||
<br /> | <br /> | ||
<strong><span style="font-size: 20px;">Bimodular approximants and equal temperaments</span></strong><br /> | <strong><span style="font-size: 20px;">Bimodular approximants and equal temperaments</span></strong><br /> |