Logarithmic approximants: Difference between revisions

Wikispaces>MartinGough
**Imported revision 541426660 - Original comment: **
Wikispaces>MartinGough
**Imported revision 541434588 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-02-19 08:27:48 UTC</tt>.<br>
: This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-02-19 09:40:50 UTC</tt>.<br>
: The original revision id was <tt>541426660</tt>.<br>
: The original revision id was <tt>541434588</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">WORK IN PROGRESS
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">WORK IN PROGRESS
**&lt;span style="font-size: 15px;"&gt;Introduction&lt;/span&gt;**
**&lt;span style="font-size: 15px;"&gt;Introduction&lt;/span&gt;**
&lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;The term //logarithmic approximant//[[xenharmonic/Mike's Lecture on Vector Spaces and Dual Spaces#ref1|{1}]] (or //approximant// for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as&lt;/span&gt;
&lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;The term //logarithmic approximant//[[xenharmonic/Mike's Lecture on Vector Spaces and Dual Spaces#ref1|{1}]] (or //approximant// for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as&lt;/span&gt;
* &lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;Why does 12edo provide a reasonably accurate approximation to 5-limit just intonation?&lt;/span&gt;
* &lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;Why do certain temperaments (such as 12edo) provide a reasonably accurate approximation to 5-limit just intonation?&lt;/span&gt;
* &lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;Why are certain commas small, and roughly how small are they?&lt;/span&gt;
* &lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;Why are certain commas small, and roughly how small are they?&lt;/span&gt;
* &lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;Why is the ratio of the perfect fifth to the perfect fourth close to √2?&lt;/span&gt;
* &lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;Why is the ratio of the perfect fifth to the perfect fourth close to √2?&lt;/span&gt;
Line 50: Line 51:
[[math]]
[[math]]
&lt;span style="color: #ffffff;"&gt;######&lt;/span&gt; = (frequency difference) / (frequency sum)
&lt;span style="color: #ffffff;"&gt;######&lt;/span&gt; = (frequency difference) / (frequency sum)
&lt;span style="color: #ffffff;"&gt;######&lt;/span&gt; =½ (frequency difference) / (mean frequency)
&lt;span style="color: #ffffff;"&gt;######&lt;/span&gt; =½ (frequency difference) / (mean frequency)
&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//r// &lt;/span&gt;can be retrieved from &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//v//&lt;/span&gt; using the inverse relation
&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//r// &lt;/span&gt;can be retrieved from &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//v//&lt;/span&gt; using the inverse relation
Line 58: Line 58:


**&lt;span style="font-size: 15px;"&gt;Properties of bimodular approximants&lt;/span&gt;**
**&lt;span style="font-size: 15px;"&gt;Properties of bimodular approximants&lt;/span&gt;**
When &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//r// &lt;/span&gt;is small, &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//v//&lt;/span&gt; provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others.
When &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//r// &lt;/span&gt;is small, &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//v//&lt;/span&gt; provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others.
Noting that the exact size (in dineper units) of the interval with frequency ratio &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//r//&lt;/span&gt; is
Noting that the exact size (in dineper units) of the interval with frequency ratio &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//r//&lt;/span&gt; is
Line 70: Line 69:
which shows that &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//v// ≈ //J//&lt;/span&gt; and provides an indication of the size and sign of the error involved in this approximation.
which shows that &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//v// ≈ //J//&lt;/span&gt; and provides an indication of the size and sign of the error involved in this approximation.
//&lt;span style="font-family: Georgia;"&gt;J&lt;/span&gt;// can be expressed in terms of &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//v//&lt;/span&gt; as
//&lt;span style="font-family: Georgia;"&gt;J&lt;/span&gt;// can be expressed in terms of &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//v//&lt;/span&gt; as
[[math]]
[[math]]
\qquad J = \tanh^(-1){v} = v + \tfrac{1}{3}v^3 + \tfrac{1}{5}v^5 - ...
\qquad J = \tanh^{-1}{v} = v + \tfrac{1}{3}v^3 + \tfrac{1}{5}v^5 - ...
[[math]]
[[math]]
The function &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//v(r)//&lt;/span&gt; is the order (1,1) Padé approximant of the function &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; //J(r) =//½ ln //r// &lt;/span&gt; in the region of //r// = 1, which has the property of matching the function value and its first and second derivatives at this value of //r//. The bimodular approximant function is thus accurate to second order in //r// – 1.
The function &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//v(r)//&lt;/span&gt; is the order (1,1) Padé approximant of the function &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; //J(r) =//½ ln //r// &lt;/span&gt; in the region of //r// = 1, which has the property of matching the function value and its first and second derivatives at this value of //r//. The bimodular approximant function is thus accurate to second order in //r// – 1.


As an example, the size of the perfect fifth (in dNp units) is
As an example, the size of the perfect fifth (in dNp units) is
[[math]]
[[math]]
\qquad J = \tfrac{1}{2} \ln{3/2} = 0.20273...
\qquad J = \tfrac{1}{2} \ln{3/2} = 0.20273...
[[math]]
[[math]]
The bimodular approximant for this interval (r = 3/2) is
The bimodular approximant for this interval (r = 3/2) is
[[math]]
[[math]]
\qquad v = (3/2 – 1)/(3/2 + 1) = (3 – 2)/(3 + 2) = 1/5 = 0.2
\qquad v = (3/2 – 1)/(3/2 + 1) = (3 – 2)/(3 + 2) = 1/5 = 0.2
[[math]]
[[math]]
and the Taylor series indicates that the error in this value is about
and the Taylor series indicates that the error in this value is about
[[math]]
[[math]]
Line 98: Line 89:
The figure shows the approximants of the first 31 superparticular intervals, which are reciprocals of odd integers.
The figure shows the approximants of the first 31 superparticular intervals, which are reciprocals of odd integers.
&lt;Figure&gt;
&lt;Figure&gt;
If v[J] denotes bimodular approximant of an interval J with frequency ratio r,


If &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//v[J]// &lt;/span&gt;denotes the bimodular approximant of an interval &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//J//&lt;/span&gt; with frequency ratio //&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;r&lt;/span&gt;//,
[[math]]
[[math]]
\qquad v[-J] = -v[J]
\qquad v[-J] = -v[J] \\
\qquad v[J_1 +J_2] = \frac{v_1+v_2}{1+v_1 v_2}
\qquad v[J_1 +J_2] = \frac{v_1+v_2}{1+v_1 v_2}
[[math]]
[[math]]
This last result is equivalent to the identity expressing tanh(J1 + J2) in terms of tanh(J1) and tanh(J2).
This last result is equivalent to the identity expressing &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;tanh(//J//&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;"&gt;1 + &lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//J//&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;"&gt;1&lt;/span&gt;&lt;span style="font-family: Georgia,serif;"&gt;)&lt;/span&gt; in terms of &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;tanh(//J//&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;"&gt;1&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;)&lt;/span&gt; and &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;tanh(//J//&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;"&gt;2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;).&lt;/span&gt;


**&lt;span style="font-size: 20px;"&gt;Bimodular approximants and equal temperaments&lt;/span&gt;**
**&lt;span style="font-size: 20px;"&gt;Bimodular approximants and equal temperaments&lt;/span&gt;**
Line 167: Line 158:
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Logarithmic approximants&lt;/title&gt;&lt;/head&gt;&lt;body&gt;WORK IN PROGRESS&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Logarithmic approximants&lt;/title&gt;&lt;/head&gt;&lt;body&gt;WORK IN PROGRESS&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;&lt;span style="font-size: 15px;"&gt;Introduction&lt;/span&gt;&lt;/strong&gt;&lt;br /&gt;
&lt;strong&gt;&lt;span style="font-size: 15px;"&gt;Introduction&lt;/span&gt;&lt;/strong&gt;&lt;br /&gt;
&lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;The term &lt;em&gt;logarithmic approximant&lt;/em&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Mike%27s%20Lecture%20on%20Vector%20Spaces%20and%20Dual%20Spaces#ref1"&gt;{1}&lt;/a&gt; (or &lt;em&gt;approximant&lt;/em&gt; for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as&lt;/span&gt;&lt;br /&gt;
&lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;The term &lt;em&gt;logarithmic approximant&lt;/em&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Mike%27s%20Lecture%20on%20Vector%20Spaces%20and%20Dual%20Spaces#ref1"&gt;{1}&lt;/a&gt; (or &lt;em&gt;approximant&lt;/em&gt; for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as&lt;/span&gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;&lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;Why does 12edo provide a reasonably accurate approximation to 5-limit just intonation?&lt;/span&gt;&lt;/li&gt;&lt;li&gt;&lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;Why are certain commas small, and roughly how small are they?&lt;/span&gt;&lt;/li&gt;&lt;li&gt;&lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;Why is the ratio of the perfect fifth to the perfect fourth close to √2?&lt;/span&gt;&lt;/li&gt;&lt;/ul&gt;&lt;br /&gt;
&lt;ul&gt;&lt;li&gt;&lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;Why do certain temperaments (such as 12edo) provide a reasonably accurate approximation to 5-limit just intonation?&lt;/span&gt;&lt;/li&gt;&lt;li&gt;&lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;Why are certain commas small, and roughly how small are they?&lt;/span&gt;&lt;/li&gt;&lt;li&gt;&lt;span style="font-family: Arial,Helvetica,sans-serif;"&gt;Why is the ratio of the perfect fifth to the perfect fourth close to √2?&lt;/span&gt;&lt;/li&gt;&lt;/ul&gt;&lt;br /&gt;
The exact size, in cents, of an interval with frequency ratio &lt;em&gt;r&lt;/em&gt; is&lt;br /&gt;
The exact size, in cents, of an interval with frequency ratio &lt;em&gt;r&lt;/em&gt; is&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:0:
&lt;!-- ws:start:WikiTextMathRule:0:
Line 214: Line 206:
&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
&lt;span style="color: #ffffff;"&gt;######&lt;/span&gt; = (frequency difference) / (frequency sum)&lt;br /&gt;
&lt;span style="color: #ffffff;"&gt;######&lt;/span&gt; = (frequency difference) / (frequency sum)&lt;br /&gt;
&lt;br /&gt;
&lt;span style="color: #ffffff;"&gt;######&lt;/span&gt; =½ (frequency difference) / (mean frequency)&lt;br /&gt;
&lt;span style="color: #ffffff;"&gt;######&lt;/span&gt; =½ (frequency difference) / (mean frequency)&lt;br /&gt;
&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;r&lt;/em&gt; &lt;/span&gt;can be retrieved from &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;v&lt;/em&gt;&lt;/span&gt; using the inverse relation&lt;br /&gt;
&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;r&lt;/em&gt; &lt;/span&gt;can be retrieved from &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;v&lt;/em&gt;&lt;/span&gt; using the inverse relation&lt;br /&gt;
Line 223: Line 214:
&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;&lt;span style="font-size: 15px;"&gt;Properties of bimodular approximants&lt;/span&gt;&lt;/strong&gt;&lt;br /&gt;
&lt;strong&gt;&lt;span style="font-size: 15px;"&gt;Properties of bimodular approximants&lt;/span&gt;&lt;/strong&gt;&lt;br /&gt;
&lt;br /&gt;
When &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;r&lt;/em&gt; &lt;/span&gt;is small, &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;v&lt;/em&gt;&lt;/span&gt; provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others.&lt;br /&gt;
When &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;r&lt;/em&gt; &lt;/span&gt;is small, &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;v&lt;/em&gt;&lt;/span&gt; provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others.&lt;br /&gt;
Noting that the exact size (in dineper units) of the interval with frequency ratio &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;r&lt;/em&gt;&lt;/span&gt; is&lt;br /&gt;
Noting that the exact size (in dineper units) of the interval with frequency ratio &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;r&lt;/em&gt;&lt;/span&gt; is&lt;br /&gt;
Line 237: Line 227:
which shows that &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;v&lt;/em&gt; ≈ &lt;em&gt;J&lt;/em&gt;&lt;/span&gt; and provides an indication of the size and sign of the error involved in this approximation.&lt;br /&gt;
which shows that &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;v&lt;/em&gt; ≈ &lt;em&gt;J&lt;/em&gt;&lt;/span&gt; and provides an indication of the size and sign of the error involved in this approximation.&lt;br /&gt;
&lt;em&gt;&lt;span style="font-family: Georgia;"&gt;J&lt;/span&gt;&lt;/em&gt; can be expressed in terms of &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;v&lt;/em&gt;&lt;/span&gt; as&lt;br /&gt;
&lt;em&gt;&lt;span style="font-family: Georgia;"&gt;J&lt;/span&gt;&lt;/em&gt; can be expressed in terms of &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;v&lt;/em&gt;&lt;/span&gt; as&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:8:
&lt;!-- ws:start:WikiTextMathRule:8:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
\qquad J = \tanh^(-1){v} = v + \tfrac{1}{3}v^3 + \tfrac{1}{5}v^5 - ...&amp;lt;br/&amp;gt;[[math]]
\qquad J = \tanh^{-1}{v} = v + \tfrac{1}{3}v^3 + \tfrac{1}{5}v^5 - ...&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;\qquad J = \tanh^(-1){v} = v + \tfrac{1}{3}v^3 + \tfrac{1}{5}v^5 - ...&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:8 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\qquad J = \tanh^{-1}{v} = v + \tfrac{1}{3}v^3 + \tfrac{1}{5}v^5 - ...&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:8 --&gt;&lt;br /&gt;
&lt;br /&gt;
The function &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;v(r)&lt;/em&gt;&lt;/span&gt; is the order (1,1) Padé approximant of the function &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; &lt;em&gt;J(r) =&lt;/em&gt;½ ln &lt;em&gt;r&lt;/em&gt; &lt;/span&gt; in the region of &lt;em&gt;r&lt;/em&gt; = 1, which has the property of matching the function value and its first and second derivatives at this value of &lt;em&gt;r&lt;/em&gt;. The bimodular approximant function is thus accurate to second order in &lt;em&gt;r&lt;/em&gt; – 1.&lt;br /&gt;
The function &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;v(r)&lt;/em&gt;&lt;/span&gt; is the order (1,1) Padé approximant of the function &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; &lt;em&gt;J(r) =&lt;/em&gt;½ ln &lt;em&gt;r&lt;/em&gt; &lt;/span&gt; in the region of &lt;em&gt;r&lt;/em&gt; = 1, which has the property of matching the function value and its first and second derivatives at this value of &lt;em&gt;r&lt;/em&gt;. The bimodular approximant function is thus accurate to second order in &lt;em&gt;r&lt;/em&gt; – 1.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
As an example, the size of the perfect fifth (in dNp units) is&lt;br /&gt;
As an example, the size of the perfect fifth (in dNp units) is&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:9:
&lt;!-- ws:start:WikiTextMathRule:9:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
\qquad J = \tfrac{1}{2} \ln{3/2} = 0.20273...&amp;lt;br /&amp;gt;
\qquad J = \tfrac{1}{2} \ln{3/2} = 0.20273...&amp;lt;br/&amp;gt;[[math]]
&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;\qquad J = \tfrac{1}{2} \ln{3/2} = 0.20273...&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:9 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\qquad J = \tfrac{1}{2} \ln{3/2} = 0.20273...
&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:9 --&gt;&lt;br /&gt;
&lt;br /&gt;
The bimodular approximant for this interval (r = 3/2) is&lt;br /&gt;
The bimodular approximant for this interval (r = 3/2) is&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:10:
&lt;!-- ws:start:WikiTextMathRule:10:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
\qquad v = (3/2 – 1)/(3/2 + 1) = (3 – 2)/(3 + 2) = 1/5 = 0.2&amp;lt;br/&amp;gt;[[math]]
\qquad v = (3/2 – 1)/(3/2 + 1) = (3 – 2)/(3 + 2) = 1/5 = 0.2&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;\qquad v = (3/2 – 1)/(3/2 + 1) = (3 – 2)/(3 + 2) = 1/5 = 0.2&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:10 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\qquad v = (3/2 – 1)/(3/2 + 1) = (3 – 2)/(3 + 2) = 1/5 = 0.2&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:10 --&gt;&lt;br /&gt;
&lt;br /&gt;
and the Taylor series indicates that the error in this value is about&lt;br /&gt;
and the Taylor series indicates that the error in this value is about&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:11:
&lt;!-- ws:start:WikiTextMathRule:11:
Line 270: Line 251:
The figure shows the approximants of the first 31 superparticular intervals, which are reciprocals of odd integers.&lt;br /&gt;
The figure shows the approximants of the first 31 superparticular intervals, which are reciprocals of odd integers.&lt;br /&gt;
&amp;lt;Figure&amp;gt;&lt;br /&gt;
&amp;lt;Figure&amp;gt;&lt;br /&gt;
If v[J] denotes bimodular approximant of an interval J with frequency ratio r,&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
If &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;v[J]&lt;/em&gt; &lt;/span&gt;denotes the bimodular approximant of an interval &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;J&lt;/em&gt;&lt;/span&gt; with frequency ratio &lt;em&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;r&lt;/span&gt;&lt;/em&gt;,&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:12:
&lt;!-- ws:start:WikiTextMathRule:12:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
\qquad v[-J] = -v[J]&amp;lt;br /&amp;gt;
\qquad v[-J] = -v[J] \\&amp;lt;br /&amp;gt;
\qquad v[J_1 +J_2] = \frac{v_1+v_2}{1+v_1 v_2}&amp;lt;br/&amp;gt;[[math]]
\qquad v[J_1 +J_2] = \frac{v_1+v_2}{1+v_1 v_2}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;\qquad v[-J] = -v[J]
  --&gt;&lt;script type="math/tex"&gt;\qquad v[-J] = -v[J] \\
\qquad v[J_1 +J_2] = \frac{v_1+v_2}{1+v_1 v_2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:12 --&gt;&lt;br /&gt;
\qquad v[J_1 +J_2] = \frac{v_1+v_2}{1+v_1 v_2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:12 --&gt;&lt;br /&gt;
This last result is equivalent to the identity expressing tanh(J1 + J2) in terms of tanh(J1) and tanh(J2).&lt;br /&gt;
This last result is equivalent to the identity expressing &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;tanh(&lt;em&gt;J&lt;/em&gt;&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;"&gt;1 + &lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;J&lt;/em&gt;&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;"&gt;1&lt;/span&gt;&lt;span style="font-family: Georgia,serif;"&gt;)&lt;/span&gt; in terms of &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;tanh(&lt;em&gt;J&lt;/em&gt;&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;"&gt;1&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;)&lt;/span&gt; and &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;tanh(&lt;em&gt;J&lt;/em&gt;&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;"&gt;2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;).&lt;/span&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;strong&gt;&lt;span style="font-size: 20px;"&gt;Bimodular approximants and equal temperaments&lt;/span&gt;&lt;/strong&gt;&lt;br /&gt;
&lt;strong&gt;&lt;span style="font-size: 20px;"&gt;Bimodular approximants and equal temperaments&lt;/span&gt;&lt;/strong&gt;&lt;br /&gt;