Logarithmic approximants: Difference between revisions
Wikispaces>MartinGough **Imported revision 541434588 - Original comment: ** |
Wikispaces>MartinGough **Imported revision 541464324 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-02-19 | : This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-02-19 13:07:32 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>541464324</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">WORK IN PROGRESS | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">WORK IN PROGRESS | ||
=Introduction= | |||
<span style="font-family: Arial,Helvetica,sans-serif;">The term //logarithmic approximant//[[xenharmonic/Mike's Lecture on Vector Spaces and Dual Spaces#ref1|{1}]] (or //approximant// for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as</span> | <span style="font-family: Arial,Helvetica,sans-serif;">The term //logarithmic approximant//[[xenharmonic/Mike's Lecture on Vector Spaces and Dual Spaces#ref1|{1}]] (or //approximant// for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as</span> | ||
* <span style="font-family: Arial,Helvetica,sans-serif;">Why do certain temperaments (such as 12edo) provide a reasonably accurate approximation to 5-limit just intonation?</span> | * <span style="font-family: Arial,Helvetica,sans-serif;">Why do certain temperaments (such as 12edo) provide a reasonably accurate approximation to 5-limit just intonation?</span> | ||
Line 29: | Line 28: | ||
[[math]] | [[math]] | ||
This is equivalent to replacing the cent with a unit of interval measurement having a frequency ratio | This is equivalent to replacing the cent with a unit of interval measurement having a frequency ratio e<span style="vertical-align: super;">2</span> = 7.38906... This unit interval can conveniently be termed the dineper (dNp), being twice the size of the natural unit for logarithmic measurement, the Neper. | ||
Comparing the two units of measurement we find | Comparing the two units of measurement we find | ||
1 dineper = 2400/ln(2) = 3462.468 cents | 1 dineper = 2400/ln(2) = 3462.468 cents | ||
which is about 1.4 semitones short of three octaves. | which is about 1.4 semitones short of three octaves. | ||
The logarithmic size of an interval with a given frequency ratio can be conveniently notated as that ratio underlined. Thus __3/2__ is the perfect fifth. | |||
Three types of approximants are described here: | Three types of approximants are described here: | ||
* Bimodular approximants (first order rational approximants) | * Bimodular approximants (first order rational approximants) | ||
Line 38: | Line 40: | ||
* Quadratic approximants | * Quadratic approximants | ||
**<span style="font-size: 20px;">Bimodular approximants</span>** | =**<span style="font-size: 20px;">Bimodular approximants</span>**= | ||
**<span style="font-size: 15px;">Definition</span>** | ==**<span style="font-size: 15px;">Definition</span>**== | ||
The bimodular approximant of an interval with frequency ratio //<span style="font-family: Georgia,serif; font-size: 110%;">r = n/d</span>// is | The bimodular approximant of an interval with frequency ratio //<span style="font-family: Georgia,serif; font-size: 110%;">r = n/d</span>// is | ||
[[math]] | [[math]] | ||
Line 57: | Line 59: | ||
[[math]] | [[math]] | ||
**<span style="font-size: 15px;">Properties of bimodular approximants</span>** | ==**<span style="font-size: 15px;">Properties of bimodular approximants</span>**== | ||
When <span style="font-family: Georgia,serif; font-size: 110%;">//r// </span>is small, <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span> provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others. | When <span style="font-family: Georgia,serif; font-size: 110%;">//r// </span>is small, <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span> provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others. | ||
Noting that the exact size (in dineper units) of the interval with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;">//r//</span> is | Noting that the exact size (in dineper units) of the interval with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;">//r//</span> is | ||
Line 65: | Line 67: | ||
the relationship between <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span> and <span style="font-family: Georgia,serif; font-size: 110%;">//J//</span> can be expressed as | the relationship between <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span> and <span style="font-family: Georgia,serif; font-size: 110%;">//J//</span> can be expressed as | ||
[[math]] | [[math]] | ||
\qquad v = \frac{r-1}{r+1} = \frac{ | \qquad v = \frac{r-1}{r+1} = \frac{e^{2J}-1}{e^{2J}+1} = \tanh{J} = J - \tfrac{1}{3}J^3 + \tfrac{2}{15}J^5 - ... | ||
[[math]] | [[math]] | ||
which shows that <span style="font-family: Georgia,serif; font-size: 110%;">//v// ≈ //J//</span> and provides an indication of the size and sign of the error involved in this approximation. | which shows that <span style="font-family: Georgia,serif; font-size: 110%;">//v// ≈ //J//</span> and provides an indication of the size and sign of the error involved in this approximation. | ||
Line 87: | Line 89: | ||
[[math]] | [[math]] | ||
The | The approximants of superparticular intervals are reciprocals of odd integers: | ||
<Figure> | <Figure>^^^ | ||
If <span style="font-family: Georgia,serif; font-size: 110%;">//v[J | If <span style="font-family: Georgia,serif; font-size: 110%;">//v//[//J//] </span>denotes the bimodular approximant of an interval <span style="font-family: Georgia,serif; font-size: 110%;">//J//</span> with frequency ratio //<span style="font-family: Georgia,serif; font-size: 110%;">r</span>//, | ||
[[math]] | [[math]] | ||
\qquad v[-J] = -v[J] \\ | \qquad v[-J] = -v[J] \\ | ||
Line 97: | Line 99: | ||
This last result is equivalent to the identity expressing <span style="font-family: Georgia,serif; font-size: 110%;">tanh(//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1 + </span><span style="font-family: Georgia,serif; font-size: 110%;">//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span><span style="font-family: Georgia,serif;">)</span> in terms of <span style="font-family: Georgia,serif; font-size: 110%;">tanh(//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span><span style="font-family: Georgia,serif; font-size: 110%;">)</span> and <span style="font-family: Georgia,serif; font-size: 110%;">tanh(//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span><span style="font-family: Georgia,serif; font-size: 110%;">).</span> | This last result is equivalent to the identity expressing <span style="font-family: Georgia,serif; font-size: 110%;">tanh(//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1 + </span><span style="font-family: Georgia,serif; font-size: 110%;">//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span><span style="font-family: Georgia,serif;">)</span> in terms of <span style="font-family: Georgia,serif; font-size: 110%;">tanh(//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span><span style="font-family: Georgia,serif; font-size: 110%;">)</span> and <span style="font-family: Georgia,serif; font-size: 110%;">tanh(//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span><span style="font-family: Georgia,serif; font-size: 110%;">).</span> | ||
**<span style="font-size: 20px;">Bimodular approximants and equal temperaments</span>** | =**<span style="font-size: 20px;">Bimodular approximants and equal temperaments</span>**= | ||
While bimodular approximants have historically been used as a means of estimating the sizes of very small intervals, they remain reasonably accurate as the interval size is increased to an octave or more. And being easily computable, they provide a quick means of comparing the relative sizes of intervals. For example: | While bimodular approximants have historically been used as a means of estimating the sizes of very small intervals, they remain reasonably accurate as the interval size is increased to an octave or more. And being easily computable, they provide a quick means of comparing the relative sizes of intervals. For example: | ||
Two perfect fourths (//r// = 4/3, = 1/7) approximate a minor seventh (//r// = 9/5, = 2/7) | Two perfect fourths (//r// = 4/3, //<span style="font-family: Georgia,serif; font-size: 110%;">v</span>// = 1/7) approximate a minor seventh (//r// = 9/5, = 2/7) | ||
Three major thirds (//r// = 5/4, = 1/9) or two __7/5__s ( = 1/6) or five __8/7__s ( = 1/15) approximate an octave (//r// = 2/1, = 1/3) | Three major thirds (//r// = 5/4, //<span style="font-family: Georgia,serif; font-size: 110%;">v</span>// = 1/9) or two __7/5__s (//<span style="font-family: Georgia,serif; font-size: 110%;">v</span>// = 1/6) or five __8/7__s (//<span style="font-family: Georgia,serif; font-size: 110%;">v</span>// = 1/15) approximate an octave (//r// = 2/1,//<span style="font-family: Georgia,serif; font-size: 110%;"> v</span>// = 1/3) | ||
Bimodular approximants (abbreviated to ‘approximants’ here) also provide simple explanations for the properties of certain equal temperaments. | Bimodular approximants (abbreviated to ‘approximants’ here) also provide simple explanations for the properties of certain equal temperaments. | ||
Tuning the perfect fourth and perfect fifth in the ratio of their approximants (1/7 : 1/5 = 5 : 7) and adjusting their sum to a pure octave yields 12edo (considered as a 3-limit temperament). This is an example of the high accuracy typically obtainable from a tempering policy which takes two intervals which are similar in size and not too large, tunes them in their approximant ratio, and normalises their sum to a pure interval. | Tuning the perfect fourth and perfect fifth in the ratio of their approximants (1/7 : 1/5 = 5 : 7) and adjusting their sum to a pure octave yields 12edo (considered as a 3-limit temperament). This is an example of the high accuracy typically obtainable from a tempering policy which takes two intervals which are similar in size and not too large, tunes them in their approximant ratio, and normalises their sum to a pure interval. | ||
Line 112: | Line 114: | ||
Relationships of this sort can be identified in all equal temperaments. | Relationships of this sort can be identified in all equal temperaments. | ||
<span style="font-size: 15px;">Bimodular commas</span> | ==<span style="font-size: 15px;">Bimodular commas</span>== | ||
As a consequence of the near-rational interval relationships implied by approximants, any pair of source intervals can be used to define a comma. | As a consequence of the near-rational interval relationships implied by approximants, any pair of source intervals can be used to define a comma. | ||
Given two intervals | Given two intervals <span style="font-family: Georgia,serif; font-size: 110%;">//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> and <span style="font-family: Georgia,serif; font-size: 110%;">//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span> (with<span style="font-family: Georgia,serif; font-size: 110%;"> //J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> < <span style="font-family: Georgia,serif; font-size: 110%;">//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span>) and their approximants <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> and //<span style="font-family: Georgia,serif; font-size: 110%;">v</span>//<span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span>, we define the //bimodular residue// as | ||
[[math]] | [[math]] | ||
\qquad b_r(J_1,J_2) = \frac{J_2}{v_2} - \frac{J_1}{v_1} | \qquad b_r(J_1,J_2) = \frac{J_2}{v_2} - \frac{J_1}{v_1} | ||
[[math]] | [[math]] | ||
and using the Taylor series expansion of J(v) we find | and using the Taylor series expansion of <span style="font-family: Georgia,serif; font-size: 110%;">//J//(//v//)</span> we find | ||
[[math]] | [[math]] | ||
\qquad b_r(J_1,J_2) ≈ \tfrac{1}{3} (v_2^2 – v_1^2) = \tfrac{1}{3} (v_2 + v_1)(v_2 – v_1) | \qquad b_r(J_1,J_2) ≈ \tfrac{1}{3} (v_2^2 – v_1^2) = \tfrac{1}{3} (v_2 + v_1)(v_2 – v_1) | ||
[[math]] | [[math]] | ||
The bimodular comma is obtained from the bimodular residue by means of a rational multiplier which ensures that the result (in line with the usual convention applied to commas) is a linear combination of | The bimodular comma is obtained from the bimodular residue by means of a rational multiplier which ensures that the result (in line with the usual convention applied to commas) is a linear combination of <span style="font-family: Georgia,serif; font-size: 110%;">//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> and //<span style="font-family: Georgia,serif; font-size: 110%;">J</span>//<span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span> with integer coefficients sharing no common factor: | ||
[[math]] | [[math]] | ||
\qquad b(J_1,J_2) ≈ b_m(J_1,J_2) b_r(J_1,J_2) | \qquad b(J_1,J_2) ≈ b_m(J_1,J_2) b_r(J_1,J_2) | ||
Line 132: | Line 134: | ||
and (with rare exceptions) | and (with rare exceptions) | ||
[[math]] | [[math]] | ||
\qquad b_m(J_1,J_2) ≈ \frac{LCM(j_1,j_2}{GCD(g_1,g_2)} | \qquad b_m(J_1,J_2) ≈ \frac{LCM(j_1,j_2)}{GCD(g_1,g_2)} | ||
[[math]] | [[math]] | ||
The bimodular residue is accurately estimated by | The bimodular residue is accurately estimated by | ||
Line 143: | Line 145: | ||
[[math]] | [[math]] | ||
Examples | ===Examples=== | ||
If the source intervals are the perfect fourth (f) and the perfect fifth (F), | If the source intervals are the perfect fourth (//f = __4/3__)// and the perfect fifth (//F = __3/2__//), <span style="font-family: Georgia,serif; font-size: 110%;">//v//1 = 1/7</span>, <span style="font-family: Georgia,serif; font-size: 110%;">//v//2 = 1/5</span>, and //<span style="font-family: Georgia,serif; font-size: 110%;">b</span>// is the Pythagorean comma: | ||
[[math]] | [[math]] | ||
\qquad b(F,f) = b_r(F,f) = \frac{F}{\tfrac{1}{5}} - \frac{f}{\tfrac{1}{7}} = 5F – 7f | \qquad b(F,f) = b_r(F,f) = \frac{F}{\tfrac{1}{5}} - \frac{f}{\tfrac{1}{7}} = 5F – 7f | ||
[[math]] | [[math]] | ||
If the source intervals are the perfect fourth (f) and the minor seventh ( | If the source intervals are the perfect fourth (//f// //= __4/3__//) and the minor seventh (//m<span style="vertical-align: sub;">7 = __9/5__</span>//), <span style="font-family: Georgia,serif; font-size: 110%;">//v//1 = 1/7</span>, <span style="font-family: Georgia,serif; font-size: 110%;">//v//2 = 2/7</span>, //<span style="font-family: Georgia,serif; font-size: 110%;">b</span>//r <span style="font-family: Georgia,serif; font-size: 110%;">= 2/7</span> and //<span style="font-family: Georgia,serif; font-size: 110%;">b</span>// is the syntonic comma: | ||
[[math]] | [[math]] | ||
\qquad b(m_7,f) = b_r(m_7,f) = \tfrac{2}{7} \left( \frac{m_7}{\tfrac{2}{7}} - \frac{f}{\tfrac{1}{7}} \right) = m_7 – 2f | \qquad b(m_7,f) = b_r(m_7,f) = \tfrac{2}{7} \left( \frac{m_7}{\tfrac{2}{7}} - \frac{f}{\tfrac{1}{7}} \right) = m_7 – 2f | ||
[[math]] | [[math]] | ||
Further examples of bimodular commas are provided in Reference 1. See also __Don Page | Further examples of bimodular commas are provided in Reference 1^^^. See also __Don Page comma^^^__ (another name for this type of comma). | ||
=**<span style="font-size: 21.33px;">Padé approximants of order (1,2)</span>**= | |||
In the section on bimodular approximants it was shown than an interval of logarithmic size //<span style="font-family: Georgia,serif; font-size: 110%;">J</span>// (measured in dineper units) is related to its bimodular approximant by | |||
[[math]] | |||
\qquad J = \tanh^{-1}{v} = v + \tfrac{1}{3}v^3 + \tfrac{1}{5}v^5 - ... | |||
[[math]] | |||
where | |||
[[math]] | |||
\qquad v = \frac{r-1}{r+1} | |||
[[math]] | |||
and //<span style="font-family: Georgia,serif; font-size: 110%;">r</span>// is the interval’s frequency ratio. | |||
Another way to express this relationship is with a continued fraction: | |||
[[math]] | |||
\qquad J = \tanh^(-1){v} = v / (1-v^2/(3 – 4v^2/(5 – 9v^2/(7 - ...))) | |||
[[math]] | |||
The first convergent of this continued fraction is //<span style="font-family: Georgia,serif; font-size: 110%;">v</span>//, the bimodular approximant. The second convergent, and the Padé approximant of order (1,2), is<span style="font-family: Georgia,serif; font-size: 110%;"> 3//v///(3-//v//</span><span style="vertical-align: super;">2</span>). | |||
Values of this rational approximant for some simple 5-limit intervals are shown in the table below. | |||
|| //Interval// || //(1,2) Padé approximant// || | |||
|| Perfect twelfth __3/1__ || 6/11 || | |||
|| Octave 2/1 || 9/26 || | |||
|| Major sixth 5/3 || 12 15/ || | |||
|| Perfect fifth 3/2 || 74/47 || | |||
|| Perfect fourth 4/3 || 21/146 || | |||
|| Major third 5/4 || 27/242 || | |||
^^^</pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Logarithmic approximants</title></head><body>WORK IN PROGRESS<br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Logarithmic approximants</title></head><body>WORK IN PROGRESS<br /> | ||
< | <!-- ws:start:WikiTextHeadingRule:25:&lt;h1&gt; --><h1 id="toc0"><a name="Introduction"></a><!-- ws:end:WikiTextHeadingRule:25 -->Introduction</h1> | ||
< | <span style="font-family: Arial,Helvetica,sans-serif;">The term <em>logarithmic approximant</em><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Mike%27s%20Lecture%20on%20Vector%20Spaces%20and%20Dual%20Spaces#ref1">{1}</a> (or <em>approximant</em> for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as</span><br /> | ||
<span style="font-family: Arial,Helvetica,sans-serif;">The term <em>logarithmic approximant</em><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Mike%27s%20Lecture%20on%20Vector%20Spaces%20and%20Dual%20Spaces#ref1">{1}</a> (or <em>approximant</em> for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as</span><br /> | |||
<ul><li><span style="font-family: Arial,Helvetica,sans-serif;">Why do certain temperaments (such as 12edo) provide a reasonably accurate approximation to 5-limit just intonation?</span></li><li><span style="font-family: Arial,Helvetica,sans-serif;">Why are certain commas small, and roughly how small are they?</span></li><li><span style="font-family: Arial,Helvetica,sans-serif;">Why is the ratio of the perfect fifth to the perfect fourth close to √2?</span></li></ul><br /> | <ul><li><span style="font-family: Arial,Helvetica,sans-serif;">Why do certain temperaments (such as 12edo) provide a reasonably accurate approximation to 5-limit just intonation?</span></li><li><span style="font-family: Arial,Helvetica,sans-serif;">Why are certain commas small, and roughly how small are they?</span></li><li><span style="font-family: Arial,Helvetica,sans-serif;">Why is the ratio of the perfect fifth to the perfect fourth close to √2?</span></li></ul><br /> | ||
The exact size, in cents, of an interval with frequency ratio <em>r</em> is<br /> | The exact size, in cents, of an interval with frequency ratio <em>r</em> is<br /> | ||
Line 183: | Line 209: | ||
--><script type="math/tex">\qquad J = \tfrac{1}{2} \ln{r} | --><script type="math/tex">\qquad J = \tfrac{1}{2} \ln{r} | ||
</script><!-- ws:end:WikiTextMathRule:2 --><br /> | </script><!-- ws:end:WikiTextMathRule:2 --><br /> | ||
This is equivalent to replacing the cent with a unit of interval measurement having a frequency ratio | This is equivalent to replacing the cent with a unit of interval measurement having a frequency ratio e<span style="vertical-align: super;">2</span> = 7.38906... This unit interval can conveniently be termed the dineper (dNp), being twice the size of the natural unit for logarithmic measurement, the Neper.<br /> | ||
Comparing the two units of measurement we find<br /> | Comparing the two units of measurement we find<br /> | ||
1 dineper = 2400/ln(2) = 3462.468 cents<br /> | 1 dineper = 2400/ln(2) = 3462.468 cents<br /> | ||
which is about 1.4 semitones short of three octaves.<br /> | which is about 1.4 semitones short of three octaves.<br /> | ||
<br /> | |||
The logarithmic size of an interval with a given frequency ratio can be conveniently notated as that ratio underlined. Thus <u>3/2</u> is the perfect fifth.<br /> | |||
<br /> | |||
Three types of approximants are described here:<br /> | Three types of approximants are described here:<br /> | ||
<ul><li>Bimodular approximants (first order rational approximants)</li><li>Padé approximants of order (1,2) (second order rational approximants)</li><li>Quadratic approximants</li></ul><br /> | <ul><li>Bimodular approximants (first order rational approximants)</li><li>Padé approximants of order (1,2) (second order rational approximants)</li><li>Quadratic approximants</li></ul><br /> | ||
<strong><span style="font-size: 20px;">Bimodular approximants</span></strong>< | <!-- ws:start:WikiTextHeadingRule:27:&lt;h1&gt; --><h1 id="toc1"><a name="Bimodular approximants"></a><!-- ws:end:WikiTextHeadingRule:27 --><strong><span style="font-size: 20px;">Bimodular approximants</span></strong></h1> | ||
<strong><span style="font-size: 15px;">Definition</span></strong>< | <!-- ws:start:WikiTextHeadingRule:29:&lt;h2&gt; --><h2 id="toc2"><a name="Bimodular approximants-Definition"></a><!-- ws:end:WikiTextHeadingRule:29 --><strong><span style="font-size: 15px;">Definition</span></strong></h2> | ||
The bimodular approximant of an interval with frequency ratio <em><span style="font-family: Georgia,serif; font-size: 110%;">r = n/d</span></em> is<br /> | The bimodular approximant of an interval with frequency ratio <em><span style="font-family: Georgia,serif; font-size: 110%;">r = n/d</span></em> is<br /> | ||
<!-- ws:start:WikiTextMathRule:3: | <!-- ws:start:WikiTextMathRule:3: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
Line 213: | Line 242: | ||
--><script type="math/tex">\qquad r = \frac{1+v}{1-v}</script><!-- ws:end:WikiTextMathRule:5 --><br /> | --><script type="math/tex">\qquad r = \frac{1+v}{1-v}</script><!-- ws:end:WikiTextMathRule:5 --><br /> | ||
<br /> | <br /> | ||
<strong><span style="font-size: 15px;">Properties of bimodular approximants</span></strong>< | <!-- ws:start:WikiTextHeadingRule:31:&lt;h2&gt; --><h2 id="toc3"><a name="Bimodular approximants-Properties of bimodular approximants"></a><!-- ws:end:WikiTextHeadingRule:31 --><strong><span style="font-size: 15px;">Properties of bimodular approximants</span></strong></h2> | ||
When <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em> </span>is small, <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span> provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others.<br /> | When <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em> </span>is small, <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span> provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others.<br /> | ||
Noting that the exact size (in dineper units) of the interval with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em></span> is<br /> | Noting that the exact size (in dineper units) of the interval with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em></span> is<br /> | ||
<!-- ws:start:WikiTextMathRule:6: | <!-- ws:start:WikiTextMathRule:6: | ||
Line 223: | Line 252: | ||
<!-- ws:start:WikiTextMathRule:7: | <!-- ws:start:WikiTextMathRule:7: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
\qquad v = \frac{r-1}{r+1} = \frac{ | \qquad v = \frac{r-1}{r+1} = \frac{e^{2J}-1}{e^{2J}+1} = \tanh{J} = J - \tfrac{1}{3}J^3 + \tfrac{2}{15}J^5 - ...&lt;br/&gt;[[math]] | ||
--><script type="math/tex">\qquad v = \frac{r-1}{r+1} = \frac{ | --><script type="math/tex">\qquad v = \frac{r-1}{r+1} = \frac{e^{2J}-1}{e^{2J}+1} = \tanh{J} = J - \tfrac{1}{3}J^3 + \tfrac{2}{15}J^5 - ...</script><!-- ws:end:WikiTextMathRule:7 --><br /> | ||
which shows that <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em> ≈ <em>J</em></span> and provides an indication of the size and sign of the error involved in this approximation.<br /> | which shows that <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em> ≈ <em>J</em></span> and provides an indication of the size and sign of the error involved in this approximation.<br /> | ||
<em><span style="font-family: Georgia;">J</span></em> can be expressed in terms of <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span> as<br /> | <em><span style="font-family: Georgia;">J</span></em> can be expressed in terms of <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span> as<br /> | ||
Line 249: | Line 278: | ||
--><script type="math/tex">\qquad -\tfrac{1}{3}v^3 = -0.00267...</script><!-- ws:end:WikiTextMathRule:11 --><br /> | --><script type="math/tex">\qquad -\tfrac{1}{3}v^3 = -0.00267...</script><!-- ws:end:WikiTextMathRule:11 --><br /> | ||
<br /> | <br /> | ||
The | The approximants of superparticular intervals are reciprocals of odd integers:<br /> | ||
&lt;Figure&gt;<br /> | &lt;Figure&gt;^^^<br /> | ||
<br /> | <br /> | ||
If <span style="font-family: Georgia,serif; font-size: 110%;"><em>v[J | If <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em>[<em>J</em>] </span>denotes the bimodular approximant of an interval <span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span> with frequency ratio <em><span style="font-family: Georgia,serif; font-size: 110%;">r</span></em>,<br /> | ||
<!-- ws:start:WikiTextMathRule:12: | <!-- ws:start:WikiTextMathRule:12: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
Line 261: | Line 290: | ||
This last result is equivalent to the identity expressing <span style="font-family: Georgia,serif; font-size: 110%;">tanh(<em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1 + </span><span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span><span style="font-family: Georgia,serif;">)</span> in terms of <span style="font-family: Georgia,serif; font-size: 110%;">tanh(<em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span><span style="font-family: Georgia,serif; font-size: 110%;">)</span> and <span style="font-family: Georgia,serif; font-size: 110%;">tanh(<em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span><span style="font-family: Georgia,serif; font-size: 110%;">).</span><br /> | This last result is equivalent to the identity expressing <span style="font-family: Georgia,serif; font-size: 110%;">tanh(<em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1 + </span><span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span><span style="font-family: Georgia,serif;">)</span> in terms of <span style="font-family: Georgia,serif; font-size: 110%;">tanh(<em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span><span style="font-family: Georgia,serif; font-size: 110%;">)</span> and <span style="font-family: Georgia,serif; font-size: 110%;">tanh(<em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span><span style="font-family: Georgia,serif; font-size: 110%;">).</span><br /> | ||
<br /> | <br /> | ||
<strong><span style="font-size: 20px;">Bimodular approximants and equal temperaments</span></strong>< | <!-- ws:start:WikiTextHeadingRule:33:&lt;h1&gt; --><h1 id="toc4"><a name="Bimodular approximants and equal temperaments"></a><!-- ws:end:WikiTextHeadingRule:33 --><strong><span style="font-size: 20px;">Bimodular approximants and equal temperaments</span></strong></h1> | ||
While bimodular approximants have historically been used as a means of estimating the sizes of very small intervals, they remain reasonably accurate as the interval size is increased to an octave or more. And being easily computable, they provide a quick means of comparing the relative sizes of intervals. For example:<br /> | While bimodular approximants have historically been used as a means of estimating the sizes of very small intervals, they remain reasonably accurate as the interval size is increased to an octave or more. And being easily computable, they provide a quick means of comparing the relative sizes of intervals. For example:<br /> | ||
Two perfect fourths (<em>r</em> = 4/3, = 1/7) approximate a minor seventh (<em>r</em> = 9/5, = 2/7)<br /> | Two perfect fourths (<em>r</em> = 4/3, <em><span style="font-family: Georgia,serif; font-size: 110%;">v</span></em> = 1/7) approximate a minor seventh (<em>r</em> = 9/5, = 2/7)<br /> | ||
Three major thirds (<em>r</em> = 5/4, = 1/9) or two <u>7/5</u>s ( = 1/6) or five <u>8/7</u>s ( = 1/15) approximate an octave (<em>r</em> = 2/1, = 1/3)<br /> | Three major thirds (<em>r</em> = 5/4, <em><span style="font-family: Georgia,serif; font-size: 110%;">v</span></em> = 1/9) or two <u>7/5</u>s (<em><span style="font-family: Georgia,serif; font-size: 110%;">v</span></em> = 1/6) or five <u>8/7</u>s (<em><span style="font-family: Georgia,serif; font-size: 110%;">v</span></em> = 1/15) approximate an octave (<em>r</em> = 2/1,<em><span style="font-family: Georgia,serif; font-size: 110%;"> v</span></em> = 1/3)<br /> | ||
Bimodular approximants (abbreviated to ‘approximants’ here) also provide simple explanations for the properties of certain equal temperaments.<br /> | Bimodular approximants (abbreviated to ‘approximants’ here) also provide simple explanations for the properties of certain equal temperaments.<br /> | ||
Tuning the perfect fourth and perfect fifth in the ratio of their approximants (1/7 : 1/5 = 5 : 7) and adjusting their sum to a pure octave yields 12edo (considered as a 3-limit temperament). This is an example of the high accuracy typically obtainable from a tempering policy which takes two intervals which are similar in size and not too large, tunes them in their approximant ratio, and normalises their sum to a pure interval.<br /> | Tuning the perfect fourth and perfect fifth in the ratio of their approximants (1/7 : 1/5 = 5 : 7) and adjusting their sum to a pure octave yields 12edo (considered as a 3-limit temperament). This is an example of the high accuracy typically obtainable from a tempering policy which takes two intervals which are similar in size and not too large, tunes them in their approximant ratio, and normalises their sum to a pure interval.<br /> | ||
Line 276: | Line 305: | ||
Relationships of this sort can be identified in all equal temperaments.<br /> | Relationships of this sort can be identified in all equal temperaments.<br /> | ||
<br /> | <br /> | ||
<span style="font-size: 15px;">Bimodular commas</span>< | <!-- ws:start:WikiTextHeadingRule:35:&lt;h2&gt; --><h2 id="toc5"><a name="Bimodular approximants and equal temperaments-Bimodular commas"></a><!-- ws:end:WikiTextHeadingRule:35 --><span style="font-size: 15px;">Bimodular commas</span></h2> | ||
As a consequence of the near-rational interval relationships implied by approximants, any pair of source intervals can be used to define a comma.<br /> | As a consequence of the near-rational interval relationships implied by approximants, any pair of source intervals can be used to define a comma.<br /> | ||
Given two intervals | Given two intervals <span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> and <span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span> (with<span style="font-family: Georgia,serif; font-size: 110%;"> <em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> &lt; <span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span>) and their approximants <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> and <em><span style="font-family: Georgia,serif; font-size: 110%;">v</span></em><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span>, we define the <em>bimodular residue</em> as<br /> | ||
<!-- ws:start:WikiTextMathRule:13: | <!-- ws:start:WikiTextMathRule:13: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
\qquad b_r(J_1,J_2) = \frac{J_2}{v_2} - \frac{J_1}{v_1}&lt;br/&gt;[[math]] | \qquad b_r(J_1,J_2) = \frac{J_2}{v_2} - \frac{J_1}{v_1}&lt;br/&gt;[[math]] | ||
--><script type="math/tex">\qquad b_r(J_1,J_2) = \frac{J_2}{v_2} - \frac{J_1}{v_1}</script><!-- ws:end:WikiTextMathRule:13 --><br /> | --><script type="math/tex">\qquad b_r(J_1,J_2) = \frac{J_2}{v_2} - \frac{J_1}{v_1}</script><!-- ws:end:WikiTextMathRule:13 --><br /> | ||
and using the Taylor series expansion of J(v) we find<br /> | and using the Taylor series expansion of <span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em>(<em>v</em>)</span> we find<br /> | ||
<!-- ws:start:WikiTextMathRule:14: | <!-- ws:start:WikiTextMathRule:14: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
\qquad b_r(J_1,J_2) ≈ \tfrac{1}{3} (v_2^2 – v_1^2) = \tfrac{1}{3} (v_2 + v_1)(v_2 – v_1)&lt;br/&gt;[[math]] | \qquad b_r(J_1,J_2) ≈ \tfrac{1}{3} (v_2^2 – v_1^2) = \tfrac{1}{3} (v_2 + v_1)(v_2 – v_1)&lt;br/&gt;[[math]] | ||
--><script type="math/tex">\qquad b_r(J_1,J_2) ≈ \tfrac{1}{3} (v_2^2 – v_1^2) = \tfrac{1}{3} (v_2 + v_1)(v_2 – v_1)</script><!-- ws:end:WikiTextMathRule:14 --><br /> | --><script type="math/tex">\qquad b_r(J_1,J_2) ≈ \tfrac{1}{3} (v_2^2 – v_1^2) = \tfrac{1}{3} (v_2 + v_1)(v_2 – v_1)</script><!-- ws:end:WikiTextMathRule:14 --><br /> | ||
The bimodular comma is obtained from the bimodular residue by means of a rational multiplier which ensures that the result (in line with the usual convention applied to commas) is a linear combination of | The bimodular comma is obtained from the bimodular residue by means of a rational multiplier which ensures that the result (in line with the usual convention applied to commas) is a linear combination of <span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> and <em><span style="font-family: Georgia,serif; font-size: 110%;">J</span></em><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span> with integer coefficients sharing no common factor:<br /> | ||
<!-- ws:start:WikiTextMathRule:15: | <!-- ws:start:WikiTextMathRule:15: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
Line 301: | Line 330: | ||
<!-- ws:start:WikiTextMathRule:17: | <!-- ws:start:WikiTextMathRule:17: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
\qquad b_m(J_1,J_2) ≈ \frac{LCM(j_1,j_2}{GCD(g_1,g_2)}&lt;br/&gt;[[math]] | \qquad b_m(J_1,J_2) ≈ \frac{LCM(j_1,j_2)}{GCD(g_1,g_2)}&lt;br/&gt;[[math]] | ||
--><script type="math/tex">\qquad b_m(J_1,J_2) ≈ \frac{LCM(j_1,j_2}{GCD(g_1,g_2)}</script><!-- ws:end:WikiTextMathRule:17 --><br /> | --><script type="math/tex">\qquad b_m(J_1,J_2) ≈ \frac{LCM(j_1,j_2)}{GCD(g_1,g_2)}</script><!-- ws:end:WikiTextMathRule:17 --><br /> | ||
The bimodular residue is accurately estimated by<br /> | The bimodular residue is accurately estimated by<br /> | ||
<!-- ws:start:WikiTextMathRule:18: | <!-- ws:start:WikiTextMathRule:18: | ||
Line 314: | Line 343: | ||
--><script type="math/tex">\qquad b_r(J_1,J_2) ≈ \tfrac{1}{3} (J_1+J_2)(J_2-J_1) b_m</script><!-- ws:end:WikiTextMathRule:19 --><br /> | --><script type="math/tex">\qquad b_r(J_1,J_2) ≈ \tfrac{1}{3} (J_1+J_2)(J_2-J_1) b_m</script><!-- ws:end:WikiTextMathRule:19 --><br /> | ||
<br /> | <br /> | ||
Examples:< | <!-- ws:start:WikiTextHeadingRule:37:&lt;h3&gt; --><h3 id="toc6"><a name="Bimodular approximants and equal temperaments-Bimodular commas-Examples"></a><!-- ws:end:WikiTextHeadingRule:37 -->Examples</h3> | ||
If the source intervals are the perfect fourth (f) and the perfect fifth (F),< | If the source intervals are the perfect fourth (<em>f = <u>4/3</u>)</em> and the perfect fifth (<em>F = <u>3/2</u></em>), <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em>1 = 1/7</span>, <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em>2 = 1/5</span>, and <em><span style="font-family: Georgia,serif; font-size: 110%;">b</span></em> is the Pythagorean comma:<br /> | ||
<!-- ws:start:WikiTextMathRule:20: | <!-- ws:start:WikiTextMathRule:20: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
\qquad b(F,f) = b_r(F,f) = \frac{F}{\tfrac{1}{5}} - \frac{f}{\tfrac{1}{7}} = 5F – 7f&lt;br/&gt;[[math]] | \qquad b(F,f) = b_r(F,f) = \frac{F}{\tfrac{1}{5}} - \frac{f}{\tfrac{1}{7}} = 5F – 7f&lt;br/&gt;[[math]] | ||
--><script type="math/tex">\qquad b(F,f) = b_r(F,f) = \frac{F}{\tfrac{1}{5}} - \frac{f}{\tfrac{1}{7}} = 5F – 7f</script><!-- ws:end:WikiTextMathRule:20 --><br /> | --><script type="math/tex">\qquad b(F,f) = b_r(F,f) = \frac{F}{\tfrac{1}{5}} - \frac{f}{\tfrac{1}{7}} = 5F – 7f</script><!-- ws:end:WikiTextMathRule:20 --><br /> | ||
If the source intervals are the perfect fourth (f) and the minor seventh ( | If the source intervals are the perfect fourth (<em>f</em> <em>= <u>4/3</u></em>) and the minor seventh (<em>m<span style="vertical-align: sub;">7 = <u>9/5</u></span></em>), <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em>1 = 1/7</span>, <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em>2 = 2/7</span>, <em><span style="font-family: Georgia,serif; font-size: 110%;">b</span></em>r <span style="font-family: Georgia,serif; font-size: 110%;">= 2/7</span> and <em><span style="font-family: Georgia,serif; font-size: 110%;">b</span></em> is the syntonic comma:<br /> | ||
<!-- ws:start:WikiTextMathRule:21: | <!-- ws:start:WikiTextMathRule:21: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
Line 328: | Line 355: | ||
--><script type="math/tex">\qquad b(m_7,f) = b_r(m_7,f) = \tfrac{2}{7} \left( \frac{m_7}{\tfrac{2}{7}} - \frac{f}{\tfrac{1}{7}} \right) = m_7 – 2f</script><!-- ws:end:WikiTextMathRule:21 --><br /> | --><script type="math/tex">\qquad b(m_7,f) = b_r(m_7,f) = \tfrac{2}{7} \left( \frac{m_7}{\tfrac{2}{7}} - \frac{f}{\tfrac{1}{7}} \right) = m_7 – 2f</script><!-- ws:end:WikiTextMathRule:21 --><br /> | ||
<br /> | <br /> | ||
Further examples of bimodular commas are provided in Reference 1. See also <u>Don Page comma</u> (another name for this type of comma).</body></html></pre></div> | Further examples of bimodular commas are provided in Reference 1^^^. See also <u>Don Page comma^^^</u> (another name for this type of comma).<br /> | ||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:39:&lt;h1&gt; --><h1 id="toc7"><a name="Padé approximants of order (1,2)"></a><!-- ws:end:WikiTextHeadingRule:39 --><strong><span style="font-size: 21.33px;">Padé approximants of order (1,2)</span></strong></h1> | |||
In the section on bimodular approximants it was shown than an interval of logarithmic size <em><span style="font-family: Georgia,serif; font-size: 110%;">J</span></em> (measured in dineper units) is related to its bimodular approximant by<br /> | |||
<!-- ws:start:WikiTextMathRule:22: | |||
[[math]]&lt;br/&gt; | |||
\qquad J = \tanh^{-1}{v} = v + \tfrac{1}{3}v^3 + \tfrac{1}{5}v^5 - ...&lt;br/&gt;[[math]] | |||
--><script type="math/tex">\qquad J = \tanh^{-1}{v} = v + \tfrac{1}{3}v^3 + \tfrac{1}{5}v^5 - ...</script><!-- ws:end:WikiTextMathRule:22 --><br /> | |||
where<br /> | |||
<!-- ws:start:WikiTextMathRule:23: | |||
[[math]]&lt;br/&gt; | |||
\qquad v = \frac{r-1}{r+1}&lt;br/&gt;[[math]] | |||
--><script type="math/tex">\qquad v = \frac{r-1}{r+1}</script><!-- ws:end:WikiTextMathRule:23 --><br /> | |||
and <em><span style="font-family: Georgia,serif; font-size: 110%;">r</span></em> is the interval’s frequency ratio.<br /> | |||
Another way to express this relationship is with a continued fraction:<br /> | |||
<!-- ws:start:WikiTextMathRule:24: | |||
[[math]]&lt;br/&gt; | |||
\qquad J = \tanh^(-1){v} = v / (1-v^2/(3 – 4v^2/(5 – 9v^2/(7 - ...)))&lt;br/&gt;[[math]] | |||
--><script type="math/tex">\qquad J = \tanh^(-1){v} = v / (1-v^2/(3 – 4v^2/(5 – 9v^2/(7 - ...)))</script><!-- ws:end:WikiTextMathRule:24 --><br /> | |||
The first convergent of this continued fraction is <em><span style="font-family: Georgia,serif; font-size: 110%;">v</span></em>, the bimodular approximant. The second convergent, and the Padé approximant of order (1,2), is<span style="font-family: Georgia,serif; font-size: 110%;"> 3<em>v</em>/(3-<em>v</em></span><span style="vertical-align: super;">2</span>).<br /> | |||
Values of this rational approximant for some simple 5-limit intervals are shown in the table below.<br /> | |||
<table class="wiki_table"> | |||
<tr> | |||
<td><em>Interval</em><br /> | |||
</td> | |||
<td><em>(1,2) Padé approximant</em><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>Perfect twelfth <u>3/1</u><br /> | |||
</td> | |||
<td>6/11<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>Octave 2/1<br /> | |||
</td> | |||
<td>9/26<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>Major sixth 5/3<br /> | |||
</td> | |||
<td>12 15/<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>Perfect fifth 3/2<br /> | |||
</td> | |||
<td>74/47<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>Perfect fourth 4/3<br /> | |||
</td> | |||
<td>21/146<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>Major third 5/4<br /> | |||
</td> | |||
<td>27/242<br /> | |||
</td> | |||
</tr> | |||
</table> | |||
<br /> | |||
<br /> | |||
^^^</body></html></pre></div> |