Logarithmic approximants: Difference between revisions
Wikispaces>MartinGough **Imported revision 541616090 - Original comment: ** |
Wikispaces>MartinGough **Imported revision 541616972 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-02-20 18: | : This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-02-20 18:21:56 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>541616972</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">WORK IN PROGRESS | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">WORK IN PROGRESS | ||
=<span style="font-family: | =<span style="font-family: "Arial Black",Gadget,sans-serif;">Introduction</span>= | ||
<span style="font-family: Arial,Helvetica,sans-serif;">The term //logarithmic approximant// (or //approximant// for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as:</span> | <span style="font-family: Arial,Helvetica,sans-serif;">The term //logarithmic approximant// (or //approximant// for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as:</span> | ||
* <span style="font-family: Arial,Helvetica,sans-serif;">Why do certain temperaments such as 12edo provide a good approximation to 5-limit just intonation?</span> | * <span style="font-family: Arial,Helvetica,sans-serif;">Why do certain temperaments such as 12edo provide a good approximation to 5-limit just intonation?</span> | ||
Line 41: | Line 41: | ||
=**<span style="font-size: 20px;">Bimodular approximants</span>**= | =**<span style="font-size: 20px;">Bimodular approximants</span>**= | ||
==<span style="font-family: | ==<span style="font-family: "Arial Black",Gadget,sans-serif;">Definition</span>== | ||
The bimodular approximant of an interval with frequency ratio //<span style="font-family: Georgia,serif; font-size: 110%;">r = n/d</span>// is | The bimodular approximant of an interval with frequency ratio //<span style="font-family: Georgia,serif; font-size: 110%;">r = n/d</span>// is | ||
[[math]] | [[math]] | ||
Line 59: | Line 59: | ||
[[math]] | [[math]] | ||
==<span style="font-family: | ==<span style="font-family: "Arial Black",Gadget,sans-serif;">Properties</span>== | ||
When <span style="font-family: Georgia,serif; font-size: 110%;">//r// </span>is small, <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span> provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others. | When <span style="font-family: Georgia,serif; font-size: 110%;">//r// </span>is small, <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span> provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others. | ||
Noting that the exact size (in dineper units) of the interval with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;">//r//</span> is | Noting that the exact size (in dineper units) of the interval with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;">//r//</span> is | ||
Line 114: | Line 114: | ||
Relationships of this sort can be identified in all equal temperaments. | Relationships of this sort can be identified in all equal temperaments. | ||
==<span style="font-family: | ==<span style="font-family: "Arial Black",Gadget,sans-serif;">Bimodular commas</span>== | ||
As a consequence of the near-rational interval relationships implied by approximants, any pair of source intervals can be used to define a comma. | As a consequence of the near-rational interval relationships implied by approximants, any pair of source intervals can be used to define a comma. | ||
Given two intervals <span style="font-family: Georgia,serif; font-size: 110%;">//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> and <span style="font-family: Georgia,serif; font-size: 110%;">//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span> (with<span style="font-family: Georgia,serif; font-size: 110%;"> //J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> < <span style="font-family: Georgia,serif; font-size: 110%;">//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span>) and their approximants <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> and //<span style="font-family: Georgia,serif; font-size: 110%;">v</span>//<span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span>, we define the //bimodular residue// as | Given two intervals <span style="font-family: Georgia,serif; font-size: 110%;">//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> and <span style="font-family: Georgia,serif; font-size: 110%;">//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span> (with<span style="font-family: Georgia,serif; font-size: 110%;"> //J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> < <span style="font-family: Georgia,serif; font-size: 110%;">//J//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span>) and their approximants <span style="font-family: Georgia,serif; font-size: 110%;">//v//</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> and //<span style="font-family: Georgia,serif; font-size: 110%;">v</span>//<span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span>, we define the //bimodular residue// as | ||
Line 158: | Line 158: | ||
=**<span style="font-size: 21.33px;">Padé approximants of order (1,2)</span>**= | =**<span style="font-size: 21.33px;">Padé approximants of order (1,2)</span>**= | ||
==<span style="font-family: | ==<span style="font-family: "Arial Black",Gadget,sans-serif;">Definition</span>== | ||
In the section on bimodular approximants it was shown than an interval of logarithmic size //<span style="font-family: Georgia,serif; font-size: 110%;">J</span>// (measured in dineper units) is related to its bimodular approximant by | In the section on bimodular approximants it was shown than an interval of logarithmic size //<span style="font-family: Georgia,serif; font-size: 110%;">J</span>// (measured in dineper units) is related to its bimodular approximant by | ||
[[math]] | [[math]] | ||
Line 170: | Line 170: | ||
Another way to express this relationship is with a continued fraction: | Another way to express this relationship is with a continued fraction: | ||
[[math]] | [[math]] | ||
\qquad J = \tanh^ | \qquad J = \tanh^{-1}{v} = v / (1-v^2/(3 – 4v^2/(5 – 9v^2/(7 - ...))) | ||
[[math]] | [[math]] | ||
The first convergent of this continued fraction is //<span style="font-family: Georgia,serif; font-size: 110%;">v</span>//, the bimodular approximant. The second convergent, and the Padé approximant of order (1,2), is | The first convergent of this continued fraction is //<span style="font-family: Georgia,serif; font-size: 110%;">v</span>//, the bimodular approximant. The second convergent, and the Padé approximant of order (1,2), is | ||
[[math]] | [[math]] | ||
\qquad y = \frac{3v}{3-v^2} | |||
[[math]] | [[math]] | ||
Values of this rational approximant for some simple 5-limit intervals are shown in the table below. | Values of this rational approximant for some simple 5-limit intervals are shown in the table below. | ||
Line 197: | Line 197: | ||
=**<span style="font-size: 21.33px;">Quadratic approximants</span>**= | =**<span style="font-size: 21.33px;">Quadratic approximants</span>**= | ||
==<span style="font-family: | ==<span style="font-family: "Arial Black",Gadget,sans-serif;">Definition</span>== | ||
The quadratic approximant //<span style="font-family: Georgia,serif; font-size: 110%;">q</span>// of an interval //<span style="font-family: Georgia,serif; font-size: 110%;">J</span>// with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;">//r// = //n/////d//</span> is | The quadratic approximant //<span style="font-family: Georgia,serif; font-size: 110%;">q</span>// of an interval //<span style="font-family: Georgia,serif; font-size: 110%;">J</span>// with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;">//r// = //n/////d//</span> is | ||
[[math]] | [[math]] | ||
Line 245: | Line 245: | ||
The presence of a square root in the denominator of //<span style="font-family: Georgia,serif; font-size: 110%;">q</span>// (except where //<span style="font-family: Georgia,serif; font-size: 110%;">J</span>// is a double interval) means that quadratic approximants do not, on the whole, imply approximate rational ratios between just intervals or commas of the conventional type. Their interest stems from the fact that ratios involving integer square roots are expressible as repeating continued fractions. | The presence of a square root in the denominator of //<span style="font-family: Georgia,serif; font-size: 110%;">q</span>// (except where //<span style="font-family: Georgia,serif; font-size: 110%;">J</span>// is a double interval) means that quadratic approximants do not, on the whole, imply approximate rational ratios between just intervals or commas of the conventional type. Their interest stems from the fact that ratios involving integer square roots are expressible as repeating continued fractions. | ||
==<span style="font-family: | ==<span style="font-family: "Arial Black",Gadget,sans-serif;">Properties</span>== | ||
If //<span style="font-family: Georgia,serif; font-size: 110%;">v</span>//<span style="font-family: Georgia,serif; font-size: 110%;">[//J//]</span> and <span style="font-family: Georgia,serif; font-size: 110%;">//q//[//J//]</span> denote, respectively, the bimodular and quadratic approximants of an interval //<span style="font-family: Georgia,serif; font-size: 110%;">J</span>// with frequency ratio //<span style="font-family: Georgia,serif; font-size: 110%;">r</span>//, and //<span style="font-family: Georgia,serif; font-size: 110%;">q</span>//<span style="font-family: Georgia,serif; font-size: 80%;">n</span> denotes <span style="font-family: Georgia,serif; font-size: 110%;">//q//[//J//n]</span> , then | If //<span style="font-family: Georgia,serif; font-size: 110%;">v</span>//<span style="font-family: Georgia,serif; font-size: 110%;">[//J//]</span> and <span style="font-family: Georgia,serif; font-size: 110%;">//q//[//J//]</span> denote, respectively, the bimodular and quadratic approximants of an interval //<span style="font-family: Georgia,serif; font-size: 110%;">J</span>// with frequency ratio //<span style="font-family: Georgia,serif; font-size: 110%;">r</span>//, and //<span style="font-family: Georgia,serif; font-size: 110%;">q</span>//<span style="font-family: Georgia,serif; font-size: 80%;">n</span> denotes <span style="font-family: Georgia,serif; font-size: 110%;">//q//[//J//n]</span> , then | ||
[[math]] | [[math]] | ||
Line 380: | Line 380: | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Logarithmic approximants</title></head><body>WORK IN PROGRESS<br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Logarithmic approximants</title></head><body>WORK IN PROGRESS<br /> | ||
<!-- ws:start:WikiTextHeadingRule:40:&lt;h1&gt; --><h1 id="toc0"><a name="Introduction"></a><!-- ws:end:WikiTextHeadingRule:40 --><span style="font-family: | <!-- ws:start:WikiTextHeadingRule:40:&lt;h1&gt; --><h1 id="toc0"><a name="Introduction"></a><!-- ws:end:WikiTextHeadingRule:40 --><span style="font-family: "Arial Black",Gadget,sans-serif;">Introduction</span></h1> | ||
<span style="font-family: Arial,Helvetica,sans-serif;">The term <em>logarithmic approximant</em> (or <em>approximant</em> for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as:</span><br /> | <span style="font-family: Arial,Helvetica,sans-serif;">The term <em>logarithmic approximant</em> (or <em>approximant</em> for short) denotes an algebraic approximation to the logarithm function. By approximating interval sizes, logarithmic approximants can shed light on questions such as:</span><br /> | ||
<ul><li><span style="font-family: Arial,Helvetica,sans-serif;">Why do certain temperaments such as 12edo provide a good approximation to 5-limit just intonation?</span></li><li><span style="font-family: Arial,Helvetica,sans-serif;">Why are certain commas small, and roughly how small are they?</span></li><li><span style="font-family: Arial,Helvetica,sans-serif;">Why does the 3-limit framework produce aesthetically pleasing scale structures?</span></li></ul><br /> | <ul><li><span style="font-family: Arial,Helvetica,sans-serif;">Why do certain temperaments such as 12edo provide a good approximation to 5-limit just intonation?</span></li><li><span style="font-family: Arial,Helvetica,sans-serif;">Why are certain commas small, and roughly how small are they?</span></li><li><span style="font-family: Arial,Helvetica,sans-serif;">Why does the 3-limit framework produce aesthetically pleasing scale structures?</span></li></ul><br /> | ||
Line 414: | Line 414: | ||
<ul><li>Bimodular approximants (first order rational approximants)</li><li>Padé approximants of order (1,2) (second order rational approximants)</li><li>Quadratic approximants</li></ul><br /> | <ul><li>Bimodular approximants (first order rational approximants)</li><li>Padé approximants of order (1,2) (second order rational approximants)</li><li>Quadratic approximants</li></ul><br /> | ||
<!-- ws:start:WikiTextHeadingRule:42:&lt;h1&gt; --><h1 id="toc1"><a name="Bimodular approximants"></a><!-- ws:end:WikiTextHeadingRule:42 --><strong><span style="font-size: 20px;">Bimodular approximants</span></strong></h1> | <!-- ws:start:WikiTextHeadingRule:42:&lt;h1&gt; --><h1 id="toc1"><a name="Bimodular approximants"></a><!-- ws:end:WikiTextHeadingRule:42 --><strong><span style="font-size: 20px;">Bimodular approximants</span></strong></h1> | ||
<!-- ws:start:WikiTextHeadingRule:44:&lt;h2&gt; --><h2 id="toc2"><a name="Bimodular approximants-Definition"></a><!-- ws:end:WikiTextHeadingRule:44 --><span style="font-family: | <!-- ws:start:WikiTextHeadingRule:44:&lt;h2&gt; --><h2 id="toc2"><a name="Bimodular approximants-Definition"></a><!-- ws:end:WikiTextHeadingRule:44 --><span style="font-family: "Arial Black",Gadget,sans-serif;">Definition</span></h2> | ||
The bimodular approximant of an interval with frequency ratio <em><span style="font-family: Georgia,serif; font-size: 110%;">r = n/d</span></em> is<br /> | The bimodular approximant of an interval with frequency ratio <em><span style="font-family: Georgia,serif; font-size: 110%;">r = n/d</span></em> is<br /> | ||
<!-- ws:start:WikiTextMathRule:3: | <!-- ws:start:WikiTextMathRule:3: | ||
Line 437: | Line 437: | ||
--><script type="math/tex">\qquad r = \frac{1+v}{1-v}</script><!-- ws:end:WikiTextMathRule:5 --><br /> | --><script type="math/tex">\qquad r = \frac{1+v}{1-v}</script><!-- ws:end:WikiTextMathRule:5 --><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:46:&lt;h2&gt; --><h2 id="toc3"><a name="Bimodular approximants-Properties"></a><!-- ws:end:WikiTextHeadingRule:46 --><span style="font-family: | <!-- ws:start:WikiTextHeadingRule:46:&lt;h2&gt; --><h2 id="toc3"><a name="Bimodular approximants-Properties"></a><!-- ws:end:WikiTextHeadingRule:46 --><span style="font-family: "Arial Black",Gadget,sans-serif;">Properties</span></h2> | ||
When <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em> </span>is small, <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span> provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others.<br /> | When <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em> </span>is small, <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span> provides an approximate relative measure of the logarithmic size of the interval. This approximation was exploited by Joseph Sauveur in 1701 and later by Euler and others.<br /> | ||
Noting that the exact size (in dineper units) of the interval with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em></span> is<br /> | Noting that the exact size (in dineper units) of the interval with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em></span> is<br /> | ||
Line 500: | Line 500: | ||
Relationships of this sort can be identified in all equal temperaments.<br /> | Relationships of this sort can be identified in all equal temperaments.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:50:&lt;h2&gt; --><h2 id="toc5"><a name="Bimodular approximants-Bimodular commas"></a><!-- ws:end:WikiTextHeadingRule:50 --><span style="font-family: | <!-- ws:start:WikiTextHeadingRule:50:&lt;h2&gt; --><h2 id="toc5"><a name="Bimodular approximants-Bimodular commas"></a><!-- ws:end:WikiTextHeadingRule:50 --><span style="font-family: "Arial Black",Gadget,sans-serif;">Bimodular commas</span></h2> | ||
As a consequence of the near-rational interval relationships implied by approximants, any pair of source intervals can be used to define a comma.<br /> | As a consequence of the near-rational interval relationships implied by approximants, any pair of source intervals can be used to define a comma.<br /> | ||
Given two intervals <span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> and <span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span> (with<span style="font-family: Georgia,serif; font-size: 110%;"> <em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> &lt; <span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span>) and their approximants <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> and <em><span style="font-family: Georgia,serif; font-size: 110%;">v</span></em><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span>, we define the <em>bimodular residue</em> as<br /> | Given two intervals <span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> and <span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span> (with<span style="font-family: Georgia,serif; font-size: 110%;"> <em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> &lt; <span style="font-family: Georgia,serif; font-size: 110%;"><em>J</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span>) and their approximants <span style="font-family: Georgia,serif; font-size: 110%;"><em>v</em></span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">1</span> and <em><span style="font-family: Georgia,serif; font-size: 110%;">v</span></em><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: sub;">2</span>, we define the <em>bimodular residue</em> as<br /> | ||
Line 553: | Line 553: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:54:&lt;h1&gt; --><h1 id="toc7"><a name="Padé approximants of order (1,2)"></a><!-- ws:end:WikiTextHeadingRule:54 --><strong><span style="font-size: 21.33px;">Padé approximants of order (1,2)</span></strong></h1> | <!-- ws:start:WikiTextHeadingRule:54:&lt;h1&gt; --><h1 id="toc7"><a name="Padé approximants of order (1,2)"></a><!-- ws:end:WikiTextHeadingRule:54 --><strong><span style="font-size: 21.33px;">Padé approximants of order (1,2)</span></strong></h1> | ||
<!-- ws:start:WikiTextHeadingRule:56:&lt;h2&gt; --><h2 id="toc8"><a name="Padé approximants of order (1,2)-Definition"></a><!-- ws:end:WikiTextHeadingRule:56 --><span style="font-family: | <!-- ws:start:WikiTextHeadingRule:56:&lt;h2&gt; --><h2 id="toc8"><a name="Padé approximants of order (1,2)-Definition"></a><!-- ws:end:WikiTextHeadingRule:56 --><span style="font-family: "Arial Black",Gadget,sans-serif;">Definition</span></h2> | ||
In the section on bimodular approximants it was shown than an interval of logarithmic size <em><span style="font-family: Georgia,serif; font-size: 110%;">J</span></em> (measured in dineper units) is related to its bimodular approximant by<br /> | In the section on bimodular approximants it was shown than an interval of logarithmic size <em><span style="font-family: Georgia,serif; font-size: 110%;">J</span></em> (measured in dineper units) is related to its bimodular approximant by<br /> | ||
<!-- ws:start:WikiTextMathRule:22: | <!-- ws:start:WikiTextMathRule:22: | ||
Line 568: | Line 568: | ||
<!-- ws:start:WikiTextMathRule:24: | <!-- ws:start:WikiTextMathRule:24: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
\qquad J = \tanh^ | \qquad J = \tanh^{-1}{v} = v / (1-v^2/(3 – 4v^2/(5 – 9v^2/(7 - ...)))&lt;br/&gt;[[math]] | ||
--><script type="math/tex">\qquad J = \tanh^ | --><script type="math/tex">\qquad J = \tanh^{-1}{v} = v / (1-v^2/(3 – 4v^2/(5 – 9v^2/(7 - ...)))</script><!-- ws:end:WikiTextMathRule:24 --><br /> | ||
The first convergent of this continued fraction is <em><span style="font-family: Georgia,serif; font-size: 110%;">v</span></em>, the bimodular approximant. The second convergent, and the Padé approximant of order (1,2), is<br /> | The first convergent of this continued fraction is <em><span style="font-family: Georgia,serif; font-size: 110%;">v</span></em>, the bimodular approximant. The second convergent, and the Padé approximant of order (1,2), is<br /> | ||
<!-- ws:start:WikiTextMathRule:25: | <!-- ws:start:WikiTextMathRule:25: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
\qquad y = \frac{3v}{3-v^2}&lt;br/&gt;[[math]] | |||
--><script type="math/tex | --><script type="math/tex">\qquad y = \frac{3v}{3-v^2}</script><!-- ws:end:WikiTextMathRule:25 --><br /> | ||
Values of this rational approximant for some simple 5-limit intervals are shown in the table below.<br /> | Values of this rational approximant for some simple 5-limit intervals are shown in the table below.<br /> | ||
Line 636: | Line 636: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:58:&lt;h1&gt; --><h1 id="toc9"><a name="Quadratic approximants"></a><!-- ws:end:WikiTextHeadingRule:58 --><strong><span style="font-size: 21.33px;">Quadratic approximants</span></strong></h1> | <!-- ws:start:WikiTextHeadingRule:58:&lt;h1&gt; --><h1 id="toc9"><a name="Quadratic approximants"></a><!-- ws:end:WikiTextHeadingRule:58 --><strong><span style="font-size: 21.33px;">Quadratic approximants</span></strong></h1> | ||
<!-- ws:start:WikiTextHeadingRule:60:&lt;h2&gt; --><h2 id="toc10"><a name="Quadratic approximants-Definition"></a><!-- ws:end:WikiTextHeadingRule:60 --><span style="font-family: | <!-- ws:start:WikiTextHeadingRule:60:&lt;h2&gt; --><h2 id="toc10"><a name="Quadratic approximants-Definition"></a><!-- ws:end:WikiTextHeadingRule:60 --><span style="font-family: "Arial Black",Gadget,sans-serif;">Definition</span></h2> | ||
The quadratic approximant <em><span style="font-family: Georgia,serif; font-size: 110%;">q</span></em> of an interval <em><span style="font-family: Georgia,serif; font-size: 110%;">J</span></em> with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em> = <em>n</em><em>/d</em></span> is<br /> | The quadratic approximant <em><span style="font-family: Georgia,serif; font-size: 110%;">q</span></em> of an interval <em><span style="font-family: Georgia,serif; font-size: 110%;">J</span></em> with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em> = <em>n</em><em>/d</em></span> is<br /> | ||
<!-- ws:start:WikiTextMathRule:26: | <!-- ws:start:WikiTextMathRule:26: | ||
Line 782: | Line 782: | ||
The presence of a square root in the denominator of <em><span style="font-family: Georgia,serif; font-size: 110%;">q</span></em> (except where <em><span style="font-family: Georgia,serif; font-size: 110%;">J</span></em> is a double interval) means that quadratic approximants do not, on the whole, imply approximate rational ratios between just intervals or commas of the conventional type. Their interest stems from the fact that ratios involving integer square roots are expressible as repeating continued fractions.<br /> | The presence of a square root in the denominator of <em><span style="font-family: Georgia,serif; font-size: 110%;">q</span></em> (except where <em><span style="font-family: Georgia,serif; font-size: 110%;">J</span></em> is a double interval) means that quadratic approximants do not, on the whole, imply approximate rational ratios between just intervals or commas of the conventional type. Their interest stems from the fact that ratios involving integer square roots are expressible as repeating continued fractions.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:62:&lt;h2&gt; --><h2 id="toc11"><a name="Quadratic approximants-Properties"></a><!-- ws:end:WikiTextHeadingRule:62 --><span style="font-family: | <!-- ws:start:WikiTextHeadingRule:62:&lt;h2&gt; --><h2 id="toc11"><a name="Quadratic approximants-Properties"></a><!-- ws:end:WikiTextHeadingRule:62 --><span style="font-family: "Arial Black",Gadget,sans-serif;">Properties</span></h2> | ||
If <em><span style="font-family: Georgia,serif; font-size: 110%;">v</span></em><span style="font-family: Georgia,serif; font-size: 110%;">[<em>J</em>]</span> and <span style="font-family: Georgia,serif; font-size: 110%;"><em>q</em>[<em>J</em>]</span> denote, respectively, the bimodular and quadratic approximants of an interval <em><span style="font-family: Georgia,serif; font-size: 110%;">J</span></em> with frequency ratio <em><span style="font-family: Georgia,serif; font-size: 110%;">r</span></em>, and <em><span style="font-family: Georgia,serif; font-size: 110%;">q</span></em><span style="font-family: Georgia,serif; font-size: 80%;">n</span> denotes <span style="font-family: Georgia,serif; font-size: 110%;"><em>q</em>[<em>J</em>n]</span> , then<br /> | If <em><span style="font-family: Georgia,serif; font-size: 110%;">v</span></em><span style="font-family: Georgia,serif; font-size: 110%;">[<em>J</em>]</span> and <span style="font-family: Georgia,serif; font-size: 110%;"><em>q</em>[<em>J</em>]</span> denote, respectively, the bimodular and quadratic approximants of an interval <em><span style="font-family: Georgia,serif; font-size: 110%;">J</span></em> with frequency ratio <em><span style="font-family: Georgia,serif; font-size: 110%;">r</span></em>, and <em><span style="font-family: Georgia,serif; font-size: 110%;">q</span></em><span style="font-family: Georgia,serif; font-size: 80%;">n</span> denotes <span style="font-family: Georgia,serif; font-size: 110%;"><em>q</em>[<em>J</em>n]</span> , then<br /> | ||
<!-- ws:start:WikiTextMathRule:31: | <!-- ws:start:WikiTextMathRule:31: |