Logarithmic approximants: Difference between revisions

Wikispaces>MartinGough
**Imported revision 541704146 - Original comment: **
Wikispaces>MartinGough
**Imported revision 541710524 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-02-22 11:41:16 UTC</tt>.<br>
: This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-02-22 13:00:11 UTC</tt>.<br>
: The original revision id was <tt>541704146</tt>.<br>
: The original revision id was <tt>541710524</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 379: Line 379:
&lt;span style="color: #ffffff;"&gt;######&lt;/span&gt;Figure 3. Geometrical representation of argent temperament
&lt;span style="color: #ffffff;"&gt;######&lt;/span&gt;Figure 3. Geometrical representation of argent temperament


By the [[http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem|Gelfond-Schneider theorem ]] the frequency ratios of all argent intervals (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//r// = 2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;"&gt;√2//a//+//b//&lt;/span&gt;, where//&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; a&lt;/span&gt;// and //&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;b&lt;/span&gt;// are integers) are transcendental, with the exception of octave multiples (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//a// = 0&lt;/span&gt;).
By the [[http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem|Gelfond-Schneider theorem ]] the frequency ratios of all argent intervals (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//r// = 2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;"&gt;√2//a//+//b//&lt;/span&gt;, where//&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; a&lt;/span&gt;// and //&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;b&lt;/span&gt;// are integers) are transcendental, with the exception of octave multiples (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;//a// = 0&lt;/span&gt;). The frequency ratio of the tempered perfect eleventh (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;__8/3__ = __2.6666...__&lt;/span&gt;) is the [[http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant|Gelfond-Schneider constant ]]or Hilbert number, &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;"&gt;√2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; = 2.665144&lt;/span&gt;...


==Golden temperaments==  
==Golden temperaments==  
Line 1,059: Line 1,059:
&lt;span style="color: #ffffff;"&gt;######&lt;/span&gt;Figure 3. Geometrical representation of argent temperament&lt;br /&gt;
&lt;span style="color: #ffffff;"&gt;######&lt;/span&gt;Figure 3. Geometrical representation of argent temperament&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
By the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem" rel="nofollow"&gt;Gelfond-Schneider theorem &lt;/a&gt; the frequency ratios of all argent intervals (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;r&lt;/em&gt; = 2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;"&gt;√2&lt;em&gt;a&lt;/em&gt;+&lt;em&gt;b&lt;/em&gt;&lt;/span&gt;, where&lt;em&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; a&lt;/span&gt;&lt;/em&gt; and &lt;em&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;b&lt;/span&gt;&lt;/em&gt; are integers) are transcendental, with the exception of octave multiples (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;a&lt;/em&gt; = 0&lt;/span&gt;).&lt;br /&gt;
By the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem" rel="nofollow"&gt;Gelfond-Schneider theorem &lt;/a&gt; the frequency ratios of all argent intervals (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;r&lt;/em&gt; = 2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;"&gt;√2&lt;em&gt;a&lt;/em&gt;+&lt;em&gt;b&lt;/em&gt;&lt;/span&gt;, where&lt;em&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; a&lt;/span&gt;&lt;/em&gt; and &lt;em&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;b&lt;/span&gt;&lt;/em&gt; are integers) are transcendental, with the exception of octave multiples (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;em&gt;a&lt;/em&gt; = 0&lt;/span&gt;). The frequency ratio of the tempered perfect eleventh (&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;&lt;u&gt;8/3&lt;/u&gt; = &lt;u&gt;2.6666...&lt;/u&gt;&lt;/span&gt;) is the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant" rel="nofollow"&gt;Gelfond-Schneider constant &lt;/a&gt;or Hilbert number, &lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt;2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;"&gt;√2&lt;/span&gt;&lt;span style="font-family: Georgia,serif; font-size: 110%;"&gt; = 2.665144&lt;/span&gt;...&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:87:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc19"&gt;&lt;a name="x4. Quadratic approximants-Golden temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:87 --&gt;Golden temperaments&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:87:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc19"&gt;&lt;a name="x4. Quadratic approximants-Golden temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:87 --&gt;Golden temperaments&lt;/h2&gt;