Logarithmic approximants: Difference between revisions
Wikispaces>MartinGough **Imported revision 541704146 - Original comment: ** |
Wikispaces>MartinGough **Imported revision 541710524 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-02-22 | : This revision was by author [[User:MartinGough|MartinGough]] and made on <tt>2015-02-22 13:00:11 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>541710524</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 379: | Line 379: | ||
<span style="color: #ffffff;">######</span>Figure 3. Geometrical representation of argent temperament | <span style="color: #ffffff;">######</span>Figure 3. Geometrical representation of argent temperament | ||
By the [[http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem|Gelfond-Schneider theorem ]] the frequency ratios of all argent intervals (<span style="font-family: Georgia,serif; font-size: 110%;">//r// = 2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2//a//+//b//</span>, where//<span style="font-family: Georgia,serif; font-size: 110%;"> a</span>// and //<span style="font-family: Georgia,serif; font-size: 110%;">b</span>// are integers) are transcendental, with the exception of octave multiples (<span style="font-family: Georgia,serif; font-size: 110%;">//a// = 0</span>). | By the [[http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem|Gelfond-Schneider theorem ]] the frequency ratios of all argent intervals (<span style="font-family: Georgia,serif; font-size: 110%;">//r// = 2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2//a//+//b//</span>, where//<span style="font-family: Georgia,serif; font-size: 110%;"> a</span>// and //<span style="font-family: Georgia,serif; font-size: 110%;">b</span>// are integers) are transcendental, with the exception of octave multiples (<span style="font-family: Georgia,serif; font-size: 110%;">//a// = 0</span>). The frequency ratio of the tempered perfect eleventh (<span style="font-family: Georgia,serif; font-size: 110%;">__8/3__ = __2.6666...__</span>) is the [[http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant|Gelfond-Schneider constant ]]or Hilbert number, <span style="font-family: Georgia,serif; font-size: 110%;">2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2</span><span style="font-family: Georgia,serif; font-size: 110%;"> = 2.665144</span>... | ||
==Golden temperaments== | ==Golden temperaments== | ||
Line 1,059: | Line 1,059: | ||
<span style="color: #ffffff;">######</span>Figure 3. Geometrical representation of argent temperament<br /> | <span style="color: #ffffff;">######</span>Figure 3. Geometrical representation of argent temperament<br /> | ||
<br /> | <br /> | ||
By the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem" rel="nofollow">Gelfond-Schneider theorem </a> the frequency ratios of all argent intervals (<span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em> = 2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2<em>a</em>+<em>b</em></span>, where<em><span style="font-family: Georgia,serif; font-size: 110%;"> a</span></em> and <em><span style="font-family: Georgia,serif; font-size: 110%;">b</span></em> are integers) are transcendental, with the exception of octave multiples (<span style="font-family: Georgia,serif; font-size: 110%;"><em>a</em> = 0</span>).<br /> | By the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem" rel="nofollow">Gelfond-Schneider theorem </a> the frequency ratios of all argent intervals (<span style="font-family: Georgia,serif; font-size: 110%;"><em>r</em> = 2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2<em>a</em>+<em>b</em></span>, where<em><span style="font-family: Georgia,serif; font-size: 110%;"> a</span></em> and <em><span style="font-family: Georgia,serif; font-size: 110%;">b</span></em> are integers) are transcendental, with the exception of octave multiples (<span style="font-family: Georgia,serif; font-size: 110%;"><em>a</em> = 0</span>). The frequency ratio of the tempered perfect eleventh (<span style="font-family: Georgia,serif; font-size: 110%;"><u>8/3</u> = <u>2.6666...</u></span>) is the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant" rel="nofollow">Gelfond-Schneider constant </a>or Hilbert number, <span style="font-family: Georgia,serif; font-size: 110%;">2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2</span><span style="font-family: Georgia,serif; font-size: 110%;"> = 2.665144</span>...<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:87:&lt;h2&gt; --><h2 id="toc19"><a name="x4. Quadratic approximants-Golden temperaments"></a><!-- ws:end:WikiTextHeadingRule:87 -->Golden temperaments</h2> | <!-- ws:start:WikiTextHeadingRule:87:&lt;h2&gt; --><h2 id="toc19"><a name="x4. Quadratic approximants-Golden temperaments"></a><!-- ws:end:WikiTextHeadingRule:87 -->Golden temperaments</h2> |