User:Lucius Chiaraviglio/Musical Mad Science: Difference between revisions
→Musical Mad Science Musings on Diatonicized Sixth-Tone Sub-Chromaticism(?): Added generator to table(s); fixed Added/Last modified tags |
→Table of odd harmonics for various EDO values supporting 17L 2s: Add the rest of the last column of the 11L 2s tuning table to the tables of harmonics |
||
Line 68: | Line 68: | ||
=== Table of odd harmonics for various EDO values supporting 17L 2s === | === Table of odd harmonics for various EDO values supporting 17L 2s === | ||
This table (actually a collection of tables for now) is for tracking trends in odd harmonics along the tuning spectrum of [[11L 2s]]; it is intended to match the organization of [[11L_2s#Scale_tree|the corresponding scale tree]] | This table (actually a collection of tables for now) is for tracking trends in odd harmonics along the tuning spectrum of [[11L 2s]]; it is intended to match the organization of [[11L_2s#Scale_tree|the corresponding scale tree]]: | ||
{{Harmonics in equal|13|intervals=odd|prec=2|columns=28|title=[[13edo]] (L=1, s=1, [[16/11]] is 7) — Equalized 11L 2s}} | {{Harmonics in equal|13|intervals=odd|prec=2|columns=28|title=[[13edo]] (L=1, s=1, [[16/11]] is 7) — Equalized 11L 2s}} | ||
{{Harmonics in equal|76|intervals=odd|prec=2|columns=28|title=[[76edo]] (L=6, s=5, 16/11 is 41)}} | {{Harmonics in equal|76|intervals=odd|prec=2|columns=28|title=[[76edo]] (L=6, s=5, 16/11 is 41)}} | ||
{{Harmonics in equal|63|intervals=odd|prec=2|columns=28|title=[[63edo]] (L=5, s=4, 16/11 is 34)}} | {{Harmonics in equal|63|intervals=odd|prec=2|columns=28|title=[[63edo]] (L=5, s=4, 16/11 is 34)}} | ||
{{Harmonics in equal|113|intervals=odd|prec=2|columns=28|title=[[113edo]] (L=9, s=7, 16/11 is 61)}} | |||
{{Harmonics in equal|50|intervals=odd|prec=2|columns=28|title=[[50edo]] (L=4, s=3, 16/11 is 27) — Supersoft 11L 2s}} | {{Harmonics in equal|50|intervals=odd|prec=2|columns=28|title=[[50edo]] (L=4, s=3, 16/11 is 27) — Supersoft 11L 2s}} | ||
{{Harmonics in equal|137|intervals=odd|prec=2|columns=28|title=[[137edo]] (L=11, s=8, 16/11 is 74)}} | |||
{{Harmonics in equal|87|intervals=odd|prec=2|columns=28|title=[[87edo]] (L=7, s=5, 16/11 is 47)}} | {{Harmonics in equal|87|intervals=odd|prec=2|columns=28|title=[[87edo]] (L=7, s=5, 16/11 is 47)}} | ||
{{Harmonics in equal|124|intervals=odd|prec=2|columns=28|title=[[124edo]] (L=10, s=7, 16/11 is 67)}} | |||
{{Harmonics in equal|37|intervals=odd|prec=2|columns=28|title=[[37edo]] (L=3, s=2, 16/11 is 20) — Soft 11L 2s}} | {{Harmonics in equal|37|intervals=odd|prec=2|columns=28|title=[[37edo]] (L=3, s=2, 16/11 is 20) — Soft 11L 2s}} | ||
{{Harmonics in equal|135|intervals=odd|prec=2|columns=28|title=[[135edo]] (L=11, s=7, 16/11 is 73)}} | |||
{{Harmonics in equal|98|intervals=odd|prec=2|columns=28|title=[[98edo]] (L=8, s=5, 16/11 is 53)}} | {{Harmonics in equal|98|intervals=odd|prec=2|columns=28|title=[[98edo]] (L=8, s=5, 16/11 is 53)}} | ||
{{Harmonics in equal|159|intervals=odd|prec=2|columns=28|title=[[159edo]] (L=11, s=8, 16/11 is 86)}} | |||
{{Harmonics in equal|61|intervals=odd|prec=2|columns=28|title=[[61edo]] (L=5, s=3, 16/11 is 33) — Semisoft 11L 2s}} | {{Harmonics in equal|61|intervals=odd|prec=2|columns=28|title=[[61edo]] (L=5, s=3, 16/11 is 33) — Semisoft 11L 2s}} | ||
{{Harmonics in equal|146|intervals=odd|prec=2|columns=28|title=[[146edo]] (L=12, s=7, 16/11 is 79)}} | |||
{{Harmonics in equal|85|intervals=odd|prec=2|columns=28|title=[[85edo]] (L=7, s=4, 16/11 is 46)}} | {{Harmonics in equal|85|intervals=odd|prec=2|columns=28|title=[[85edo]] (L=7, s=4, 16/11 is 46)}} | ||
{{Harmonics in equal|109|intervals=odd|prec=2|columns=28|title=[[109edo]] (L=9, s=5, 16/11 is 59)}} | |||
{{Harmonics in equal|24|intervals=odd|prec=2|columns=28|title=[[24edo]] (L=2, s=1, 16/11 is 13) — Basic 11L 2s}} | {{Harmonics in equal|24|intervals=odd|prec=2|columns=28|title=[[24edo]] (L=2, s=1, 16/11 is 13) — Basic 11L 2s}} | ||
{{Harmonics in equal|107|intervals=odd|prec=2|columns=28|title=[[107edo]] (L=9, s=4, 16/11 is 58)}} | |||
{{Harmonics in equal|83|intervals=odd|prec=2|columns=28|title=[[83edo]] (L=7, s=3, 16/11 is 45)}} | {{Harmonics in equal|83|intervals=odd|prec=2|columns=28|title=[[83edo]] (L=7, s=3, 16/11 is 45)}} | ||
{{Harmonics in equal|142|intervals=odd|prec=2|columns=28|title=[[142edo]] (L=12, s=5, 16/11 is 77)}} | |||
{{Harmonics in equal|59|intervals=odd|prec=2|columns=28|title=[[59edo]] (L=5, s=2, 16/11 is 32) — Semihard 11L 2s}} | {{Harmonics in equal|59|intervals=odd|prec=2|columns=28|title=[[59edo]] (L=5, s=2, 16/11 is 32) — Semihard 11L 2s}} | ||
{{Harmonics in equal|153|intervals=odd|prec=2|columns=28|title=[[153edo]] (L=13, s=5, 16/11 is 83)}} | |||
{{Harmonics in equal|94|intervals=odd|prec=2|columns=28|title=[[94edo]] (L=8, s=3, 16/11 is 51)}} | {{Harmonics in equal|94|intervals=odd|prec=2|columns=28|title=[[94edo]] (L=8, s=3, 16/11 is 51)}} | ||
{{Harmonics in equal|129|intervals=odd|prec=2|columns=28|title=[[129edo]] (L=11, s=4, 16/11 is 70)}} | |||
{{Harmonics in equal|35|intervals=odd|prec=2|columns=28|title=[[35edo]] (L=3, s=1, 16/11 is 19) — Hard 11L 2s}} | {{Harmonics in equal|35|intervals=odd|prec=2|columns=28|title=[[35edo]] (L=3, s=1, 16/11 is 19) — Hard 11L 2s}} | ||
{{Harmonics in equal|116|intervals=odd|prec=2|columns=28|title=[[116edo]] (L=10, s=3, 16/11 is 63)}} | |||
{{Harmonics in equal|81|intervals=odd|prec=2|columns=28|title=[[81edo]] (L=7, s=2, 16/11 is 44)}} | {{Harmonics in equal|81|intervals=odd|prec=2|columns=28|title=[[81edo]] (L=7, s=2, 16/11 is 44)}} | ||
{{Harmonics in equal|127|intervals=odd|prec=2|columns=28|title=[[127edo]] (L=11, s=3, 16/11 is 69)}} | |||
{{Harmonics in equal|46|intervals=odd|prec=2|columns=28|title=[[46edo]] (L=4, s=1, 16/11 is 25) — Superhard 11L 2s}} | {{Harmonics in equal|46|intervals=odd|prec=2|columns=28|title=[[46edo]] (L=4, s=1, 16/11 is 25) — Superhard 11L 2s}} | ||
{{Harmonics in equal|103|intervals=odd|prec=2|columns=28|title=[[103edo]] (L=9, s=2, 16/11 is 56)}} | |||
{{Harmonics in equal|57|intervals=odd|prec=2|columns=28|title=[[57edo]] (L=5, s=1, 16/11 is 31)}} | {{Harmonics in equal|57|intervals=odd|prec=2|columns=28|title=[[57edo]] (L=5, s=1, 16/11 is 31)}} | ||
{{Harmonics in equal|68|intervals=odd|prec=2|columns=28|title=[[68edo]] (L=6, s=1, 16/11 is 37)}} | {{Harmonics in equal|68|intervals=odd|prec=2|columns=28|title=[[68edo]] (L=6, s=1, 16/11 is 37)}} | ||
{{Harmonics in equal|11|intervals=odd|prec=2|columns=28|title=[[11edo]] (L=1, s=0, 16/11 is 6) — Collapsed 11L 2s}} | {{Harmonics in equal|11|intervals=odd|prec=2|columns=28|title=[[11edo]] (L=1, s=0, 16/11 is 6) — Collapsed 11L 2s}} | ||
Note that 11/8 (the dark generator, and thereby the bright generator 16/11) remains stable throughout the entire currently posted 11L 2s table &emdash; the worst relative error is -34.8%, at 127edo. | |||
(Need a way to combine the collection of tables into a single table for better readability.) | (Need a way to combine the collection of tables into a single table for better readability.) |