87edo: Difference between revisions

ArrowHead294 (talk | contribs)
ArrowHead294 (talk | contribs)
Line 3: Line 3:


== Theory ==
== Theory ==
87edo is solid as both a [[13-limit]] (or [[15-odd-limit]]) and as a [[5-limit]] system, and does well enough in any limit in between. It is the smallest edo that is [[distinctly consistent]] in the [[13-odd-limit]] [[tonality diamond]], the smallest edo that is [[purely consistent]]{{idiosyncratic}} in the [[15-odd-limit]] (meaning no greater than 25% [[relative interval error]]s on all of the first 16 [[harmonic]]s of the [[harmonic series]]). It is also a [[zeta peak integer edo]]. Since {{nowrap|87 {{=}} 3 × 29}}, 87edo shares the same perfect fifth with [[29edo]].  
87edo is solid as both a [[13-limit]] (or [[15-odd-limit]]) and as a [[5-limit]] system, and does well enough in any limit in between. It is the smallest edo that is [[distinctly consistent]] in the [[13-odd-limit]] [[tonality diamond]], the smallest edo that is [[purely consistent]]{{idiosyncratic}} in the [[15-odd-limit]] (maintains [[relative interval error]]s of no greater than 25% on all of the first 16 [[harmonic]]s of the [[harmonic series]]). It is also a [[zeta peak integer edo]]. Since {{nowrap|87 {{=}} 3 × 29}}, 87edo shares the same perfect fifth with [[29edo]].  


87edo also shows some potential in limits beyond 13. The next four prime harmonics [[17/1|17]], [[19/1|19]], [[23/1|23]] and [[29/1|29]] are all near-critically sharp, but the feature of it is that the overtones and undertones are distinct, and most intervals are usable as long as they do not combine with [[7/1|7]], which is flat. Actually, as a no-sevens system, it is consistent in the 33-odd-limit.  
87edo also shows some potential in limits beyond 13. The next four prime harmonics [[17/1|17]], [[19/1|19]], [[23/1|23]], and [[29/1|29]] are all near-critically sharp, but the feature of it is that the overtones and undertones are distinct, and most intervals are usable as long as they do not combine with [[7/1|7]], which is flat. Actually, as a no-sevens system, it is consistent in the 33-odd-limit.  


It [[tempering out|tempers out]] 15625/15552 ([[15625/15552|kleisma]]), {{monzo| 26 -12 -3 }} ([[misty comma]]), and {{monzo| 46 -29 }} ([[29-comma]]) in the 5-limit, in addition to [[245/243]], [[1029/1024]], [[3136/3125]], and [[5120/5103]] in the 7-limit. In the 13-limit, notably [[196/195]], [[325/324]], [[352/351]], [[364/363]], [[385/384]], [[441/440]], [[625/624]], [[676/675]], and [[1001/1000]].  
It [[tempering out|tempers out]] 15625/15552 ([[15625/15552|kleisma]]), {{monzo| 26 -12 -3 }} ([[misty comma]]), and {{monzo| 46 -29 }} ([[29-comma]]) in the 5-limit, in addition to [[245/243]], [[1029/1024]], [[3136/3125]], and [[5120/5103]] in the 7-limit. In the 13-limit, notably [[196/195]], [[325/324]], [[352/351]], [[364/363]], [[385/384]], [[441/440]], [[625/624]], [[676/675]], and [[1001/1000]].