List of superparticular intervals: Difference between revisions
Wikispaces>spt3125 **Imported revision 616359519 - Original comment: added monzos (through 19-limit)** |
Wikispaces>spt3125 **Imported revision 616359767 - Original comment: added OEIS link** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:spt3125|spt3125]] and made on <tt>2017-08-13 13: | : This revision was by author [[User:spt3125|spt3125]] and made on <tt>2017-08-13 13:43:18 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>616359767</tt>.<br> | ||
: The revision comment was: <tt>added | : The revision comment was: <tt>added OEIS link</tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
Line 10: | Line 10: | ||
The list below is ordered by [[harmonic limit]], or the largest prime involved in the prime factorization. [[36_35|36/35]], for instance, is an interval of the [[7-limit]], as it factors to (2<span style="font-size: 70%; vertical-align: super;">2</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>)/(5*7), while 37/36 would belong to the 37-limit. | The list below is ordered by [[harmonic limit]], or the largest prime involved in the prime factorization. [[36_35|36/35]], for instance, is an interval of the [[7-limit]], as it factors to (2<span style="font-size: 70%; vertical-align: super;">2</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>)/(5*7), while 37/36 would belong to the 37-limit. | ||
[[http://en.wikipedia.org/wiki/St%C3%B8rmer%27s_theorem|Størmer's theorem]] guarantees that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. | [[http://en.wikipedia.org/wiki/St%C3%B8rmer%27s_theorem|Størmer's theorem]] guarantees that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. [[https://oeis.org/A145604|OEIS A145604]] gives the number of superparticular ratios in each prime limit. | ||
See also: [[Gallery of Just Intervals]]. Many of the names below come from [[http://www.huygens-fokker.org/docs/intervals.html|here]]. | See also: [[Gallery of Just Intervals]]. Many of the names below come from [[http://www.huygens-fokker.org/docs/intervals.html|here]]. | ||
Line 28: | Line 28: | ||
|| [[25_24|25/24]] || 70.672 || 5<span style="font-size: 70%; vertical-align: super;">2</span>/(2<span style="font-size: 70%; vertical-align: super;">3</span>*3) || | -3 -1 2 > || chroma, (classic) chromatic semitone, Zarlinian semitone || | || [[25_24|25/24]] || 70.672 || 5<span style="font-size: 70%; vertical-align: super;">2</span>/(2<span style="font-size: 70%; vertical-align: super;">3</span>*3) || | -3 -1 2 > || chroma, (classic) chromatic semitone, Zarlinian semitone || | ||
|| [[81_80|81/80]] || 21.506 || (3/2)<span style="font-size: 70%; vertical-align: super;">4</span>/5 || | -4 4 -1 > || syntonic comma, Didymus comma || | || [[81_80|81/80]] || 21.506 || (3/2)<span style="font-size: 70%; vertical-align: super;">4</span>/5 || | -4 4 -1 > || syntonic comma, Didymus comma || | ||
||||||||||~ 7-limit (complete | ||||||||||~ 7-limit (complete) || | ||
|| [[7_6|7/6]] || 266.871 || 7/(2*3) || | -1 -1 0 1 > || (septimal) subminor third, septimal minor third, augmented second || | || [[7_6|7/6]] || 266.871 || 7/(2*3) || | -1 -1 0 1 > || (septimal) subminor third, septimal minor third, augmented second || | ||
|| [[8_7|8/7]] || 231.174 || 2<span style="font-size: 70%; vertical-align: super;">3</span>/7 || | 3 0 0 -1 > || (septimal) supermajor second, septimal whole tone, diminished third, 7th subharmonic || | || [[8_7|8/7]] || 231.174 || 2<span style="font-size: 70%; vertical-align: super;">3</span>/7 || | 3 0 0 -1 > || (septimal) supermajor second, septimal whole tone, diminished third, 7th subharmonic || | ||
Line 42: | Line 42: | ||
|| [[2401_2400|2401/2400]] || 0.72120 || 7<span style="font-size: 70%; vertical-align: super;">4</span>/(2<span style="font-size: 70%; vertical-align: super;">5</span>*3*5<span style="font-size: 70%; vertical-align: super;">2</span>) || | -5 -1 -2 4 > || breedsma || | || [[2401_2400|2401/2400]] || 0.72120 || 7<span style="font-size: 70%; vertical-align: super;">4</span>/(2<span style="font-size: 70%; vertical-align: super;">5</span>*3*5<span style="font-size: 70%; vertical-align: super;">2</span>) || | -5 -1 -2 4 > || breedsma || | ||
|| [[4375_4374|4375/4374]] || 0.39576 || (5<span style="font-size: 70%; vertical-align: super;">4</span>*7)/(2*3<span style="font-size: 70%; vertical-align: super;">7</span>) || | -1 -7 4 1 > || ragisma || | || [[4375_4374|4375/4374]] || 0.39576 || (5<span style="font-size: 70%; vertical-align: super;">4</span>*7)/(2*3<span style="font-size: 70%; vertical-align: super;">7</span>) || | -1 -7 4 1 > || ragisma || | ||
||||||||||~ 11-limit (complete | ||||||||||~ 11-limit (complete) || | ||
|| [[11_10|11/10]] || 165.004 || 11/(2*5) || | -1 0 -1 0 1 > || (large) (undecimal) neutral second, 4/5-tone, Ptolemy's second || | || [[11_10|11/10]] || 165.004 || 11/(2*5) || | -1 0 -1 0 1 > || (large) (undecimal) neutral second, 4/5-tone, Ptolemy's second || | ||
|| [[12_11|12/11]] || 150.637 || (2<span style="font-size: 70%; vertical-align: super;">2</span>*3)/11 || | 2 1 0 0 -1 > || (small) (undecimal) neutral second, 3/4-tone || | || [[12_11|12/11]] || 150.637 || (2<span style="font-size: 70%; vertical-align: super;">2</span>*3)/11 || | 2 1 0 0 -1 > || (small) (undecimal) neutral second, 3/4-tone || | ||
Line 60: | Line 60: | ||
|| [[3025_3024|3025/3024]] || 0.57240 || (5*11)<span style="font-size: 70%; vertical-align: super;">2</span>/(2<span style="font-size: 70%; vertical-align: super;">4</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>*7) || | -4 -3 2 -1 2 > || Lehmerisma || | || [[3025_3024|3025/3024]] || 0.57240 || (5*11)<span style="font-size: 70%; vertical-align: super;">2</span>/(2<span style="font-size: 70%; vertical-align: super;">4</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>*7) || | -4 -3 2 -1 2 > || Lehmerisma || | ||
|| [[9801_9800|9801/9800]] || 0.17665 || [11/(5*7)]<span style="font-size: 70%; vertical-align: super;">2</span>*3<span style="font-size: 70%; vertical-align: super;">4</span>/2<span style="font-size: 70%; vertical-align: super;">3</span> || | -3 4 -2 -2 2 > || Gauss comma, kalisma || | || [[9801_9800|9801/9800]] || 0.17665 || [11/(5*7)]<span style="font-size: 70%; vertical-align: super;">2</span>*3<span style="font-size: 70%; vertical-align: super;">4</span>/2<span style="font-size: 70%; vertical-align: super;">3</span> || | -3 4 -2 -2 2 > || Gauss comma, kalisma || | ||
||||||||||~ 13-limit (complete | ||||||||||~ 13-limit (complete) || | ||
|| [[13_12|13/12]] || 138.573 || 13/(2<span style="font-size: 70%; vertical-align: super;">2</span>*3) || | -2 -1 0 0 0 1 > || tridecimal 2/3-tone || | || [[13_12|13/12]] || 138.573 || 13/(2<span style="font-size: 70%; vertical-align: super;">2</span>*3) || | -2 -1 0 0 0 1 > || tridecimal 2/3-tone || | ||
|| [[14_13|14/13]] || 128.298 || (2*7)/13 || | 1 0 0 1 0 -1 > || 2/3-tone, trienthird || | || [[14_13|14/13]] || 128.298 || (2*7)/13 || | 1 0 0 1 0 -1 > || 2/3-tone, trienthird || | ||
Line 89: | Line 89: | ||
|| [[10648_10647|10648/10647]] || 0.16260 || || | 3 -2 0 -1 3 -2 > || harmonisma || | || [[10648_10647|10648/10647]] || 0.16260 || || | 3 -2 0 -1 3 -2 > || harmonisma || | ||
|| [[123201_123200|123201/123200]] || 0.014052 || || | -6 6 -2 -1 -1 2 > || chalmersia || | || [[123201_123200|123201/123200]] || 0.014052 || || | -6 6 -2 -1 -1 2 > || chalmersia || | ||
||||||||||~ 17-limit (complete | ||||||||||~ 17-limit (complete) || | ||
|| [[17_16|17/16]] || 104.955 || 17/2<span style="font-size: 70%; vertical-align: super;">4</span> || | -4 0 0 0 0 0 1 > || 17th harmonic (octave reduced) || | || [[17_16|17/16]] || 104.955 || 17/2<span style="font-size: 70%; vertical-align: super;">4</span> || | -4 0 0 0 0 0 1 > || 17th harmonic (octave reduced) || | ||
|| [[18_17|18/17]] || 98.955 || (2*3<span style="font-size: 70%; vertical-align: super;">2</span>)/17 || | 1 2 0 0 0 0 -1 > || Arabic lute index finger || | || [[18_17|18/17]] || 98.955 || (2*3<span style="font-size: 70%; vertical-align: super;">2</span>)/17 || | 1 2 0 0 0 0 -1 > || Arabic lute index finger || | ||
Line 231: | Line 231: | ||
The list below is ordered by <a class="wiki_link" href="/harmonic%20limit">harmonic limit</a>, or the largest prime involved in the prime factorization. <a class="wiki_link" href="/36_35">36/35</a>, for instance, is an interval of the <a class="wiki_link" href="/7-limit">7-limit</a>, as it factors to (2<span style="font-size: 70%; vertical-align: super;">2</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>)/(5*7), while 37/36 would belong to the 37-limit.<br /> | The list below is ordered by <a class="wiki_link" href="/harmonic%20limit">harmonic limit</a>, or the largest prime involved in the prime factorization. <a class="wiki_link" href="/36_35">36/35</a>, for instance, is an interval of the <a class="wiki_link" href="/7-limit">7-limit</a>, as it factors to (2<span style="font-size: 70%; vertical-align: super;">2</span>*3<span style="font-size: 70%; vertical-align: super;">2</span>)/(5*7), while 37/36 would belong to the 37-limit.<br /> | ||
<br /> | <br /> | ||
<a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/St%C3%B8rmer%27s_theorem" rel="nofollow">Størmer's theorem</a> guarantees that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8.<br /> | <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/St%C3%B8rmer%27s_theorem" rel="nofollow">Størmer's theorem</a> guarantees that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. <a class="wiki_link_ext" href="https://oeis.org/A145604" rel="nofollow">OEIS A145604</a> gives the number of superparticular ratios in each prime limit.<br /> | ||
<br /> | <br /> | ||
See also: <a class="wiki_link" href="/Gallery%20of%20Just%20Intervals">Gallery of Just Intervals</a>. Many of the names below come from <a class="wiki_link_ext" href="http://www.huygens-fokker.org/docs/intervals.html" rel="nofollow">here</a>.<br /> | See also: <a class="wiki_link" href="/Gallery%20of%20Just%20Intervals">Gallery of Just Intervals</a>. Many of the names below come from <a class="wiki_link_ext" href="http://www.huygens-fokker.org/docs/intervals.html" rel="nofollow">here</a>.<br /> | ||
Line 383: | Line 383: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<th colspan="5">7-limit (complete | <th colspan="5">7-limit (complete)<br /> | ||
</th> | </th> | ||
</tr> | </tr> | ||
Line 543: | Line 543: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<th colspan="5">11-limit (complete | <th colspan="5">11-limit (complete)<br /> | ||
</th> | </th> | ||
</tr> | </tr> | ||
Line 751: | Line 751: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<th colspan="5">13-limit (complete | <th colspan="5">13-limit (complete)<br /> | ||
</th> | </th> | ||
</tr> | </tr> | ||
Line 1,091: | Line 1,091: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<th colspan="5">17-limit (complete | <th colspan="5">17-limit (complete)<br /> | ||
</th> | </th> | ||
</tr> | </tr> |