List of superparticular intervals: Difference between revisions

Wikispaces>spt3125
**Imported revision 616359519 - Original comment: added monzos (through 19-limit)**
Wikispaces>spt3125
**Imported revision 616359767 - Original comment: added OEIS link**
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:spt3125|spt3125]] and made on <tt>2017-08-13 13:30:36 UTC</tt>.<br>
: This revision was by author [[User:spt3125|spt3125]] and made on <tt>2017-08-13 13:43:18 UTC</tt>.<br>
: The original revision id was <tt>616359519</tt>.<br>
: The original revision id was <tt>616359767</tt>.<br>
: The revision comment was: <tt>added monzos (through 19-limit)</tt><br>
: The revision comment was: <tt>added OEIS link</tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
Line 10: Line 10:
The list below is ordered by [[harmonic limit]], or the largest prime involved in the prime factorization. [[36_35|36/35]], for instance, is an interval of the [[7-limit]], as it factors to (2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;)/(5*7), while 37/36 would belong to the 37-limit.
The list below is ordered by [[harmonic limit]], or the largest prime involved in the prime factorization. [[36_35|36/35]], for instance, is an interval of the [[7-limit]], as it factors to (2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;)/(5*7), while 37/36 would belong to the 37-limit.


[[http://en.wikipedia.org/wiki/St%C3%B8rmer%27s_theorem|Størmer's theorem]] guarantees that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8.
[[http://en.wikipedia.org/wiki/St%C3%B8rmer%27s_theorem|Størmer's theorem]] guarantees that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. [[https://oeis.org/A145604|OEIS A145604]] gives the number of superparticular ratios in each prime limit.


See also: [[Gallery of Just Intervals]]. Many of the names below come from [[http://www.huygens-fokker.org/docs/intervals.html|here]].
See also: [[Gallery of Just Intervals]]. Many of the names below come from [[http://www.huygens-fokker.org/docs/intervals.html|here]].
Line 28: Line 28:
|| [[25_24|25/24]] || 70.672 || 5&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;/(2&lt;span style="font-size: 70%; vertical-align: super;"&gt;3&lt;/span&gt;*3) || | -3 -1 2 &gt; || chroma, (classic) chromatic semitone, Zarlinian semitone ||
|| [[25_24|25/24]] || 70.672 || 5&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;/(2&lt;span style="font-size: 70%; vertical-align: super;"&gt;3&lt;/span&gt;*3) || | -3 -1 2 &gt; || chroma, (classic) chromatic semitone, Zarlinian semitone ||
|| [[81_80|81/80]] || 21.506 || (3/2)&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;/5 || | -4 4 -1 &gt; || syntonic comma, Didymus comma ||
|| [[81_80|81/80]] || 21.506 || (3/2)&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;/5 || | -4 4 -1 &gt; || syntonic comma, Didymus comma ||
||||||||||~ 7-limit (complete?) ||
||||||||||~ 7-limit (complete) ||
|| [[7_6|7/6]] || 266.871 || 7/(2*3) || | -1 -1 0 1 &gt; || (septimal) subminor third, septimal minor third, augmented second ||
|| [[7_6|7/6]] || 266.871 || 7/(2*3) || | -1 -1 0 1 &gt; || (septimal) subminor third, septimal minor third, augmented second ||
|| [[8_7|8/7]] || 231.174 || 2&lt;span style="font-size: 70%; vertical-align: super;"&gt;3&lt;/span&gt;/7 || | 3 0 0 -1 &gt; || (septimal) supermajor second, septimal whole tone, diminished third, 7th subharmonic ||
|| [[8_7|8/7]] || 231.174 || 2&lt;span style="font-size: 70%; vertical-align: super;"&gt;3&lt;/span&gt;/7 || | 3 0 0 -1 &gt; || (septimal) supermajor second, septimal whole tone, diminished third, 7th subharmonic ||
Line 42: Line 42:
|| [[2401_2400|2401/2400]] || 0.72120 || 7&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;/(2&lt;span style="font-size: 70%; vertical-align: super;"&gt;5&lt;/span&gt;*3*5&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;) || | -5 -1 -2 4 &gt; || breedsma ||
|| [[2401_2400|2401/2400]] || 0.72120 || 7&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;/(2&lt;span style="font-size: 70%; vertical-align: super;"&gt;5&lt;/span&gt;*3*5&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;) || | -5 -1 -2 4 &gt; || breedsma ||
|| [[4375_4374|4375/4374]] || 0.39576 || (5&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;*7)/(2*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;7&lt;/span&gt;) || | -1 -7 4 1 &gt; || ragisma ||
|| [[4375_4374|4375/4374]] || 0.39576 || (5&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;*7)/(2*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;7&lt;/span&gt;) || | -1 -7 4 1 &gt; || ragisma ||
||||||||||~ 11-limit (complete?) ||
||||||||||~ 11-limit (complete) ||
|| [[11_10|11/10]] || 165.004 || 11/(2*5) || | -1 0 -1 0 1 &gt; || (large) (undecimal) neutral second, 4/5-tone, Ptolemy's second ||
|| [[11_10|11/10]] || 165.004 || 11/(2*5) || | -1 0 -1 0 1 &gt; || (large) (undecimal) neutral second, 4/5-tone, Ptolemy's second ||
|| [[12_11|12/11]] || 150.637 || (2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*3)/11 || | 2 1 0 0 -1 &gt; || (small) (undecimal) neutral second, 3/4-tone ||
|| [[12_11|12/11]] || 150.637 || (2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*3)/11 || | 2 1 0 0 -1 &gt; || (small) (undecimal) neutral second, 3/4-tone ||
Line 60: Line 60:
|| [[3025_3024|3025/3024]] || 0.57240 || (5*11)&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;/(2&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*7) || | -4 -3 2 -1 2 &gt; || Lehmerisma ||
|| [[3025_3024|3025/3024]] || 0.57240 || (5*11)&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;/(2&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*7) || | -4 -3 2 -1 2 &gt; || Lehmerisma ||
|| [[9801_9800|9801/9800]] || 0.17665 || [11/(5*7)]&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;/2&lt;span style="font-size: 70%; vertical-align: super;"&gt;3&lt;/span&gt; || | -3 4 -2 -2 2 &gt; || Gauss comma, kalisma ||
|| [[9801_9800|9801/9800]] || 0.17665 || [11/(5*7)]&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt;/2&lt;span style="font-size: 70%; vertical-align: super;"&gt;3&lt;/span&gt; || | -3 4 -2 -2 2 &gt; || Gauss comma, kalisma ||
||||||||||~ 13-limit (complete?) ||
||||||||||~ 13-limit (complete) ||
|| [[13_12|13/12]] || 138.573 || 13/(2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*3) || | -2 -1 0 0 0 1 &gt; || tridecimal 2/3-tone ||
|| [[13_12|13/12]] || 138.573 || 13/(2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*3) || | -2 -1 0 0 0 1 &gt; || tridecimal 2/3-tone ||
|| [[14_13|14/13]] || 128.298 || (2*7)/13 || | 1 0 0 1 0 -1 &gt; || 2/3-tone, trienthird ||
|| [[14_13|14/13]] || 128.298 || (2*7)/13 || | 1 0 0 1 0 -1 &gt; || 2/3-tone, trienthird ||
Line 89: Line 89:
|| [[10648_10647|10648/10647]] || 0.16260 ||  || | 3 -2 0 -1 3 -2 &gt; || harmonisma ||
|| [[10648_10647|10648/10647]] || 0.16260 ||  || | 3 -2 0 -1 3 -2 &gt; || harmonisma ||
|| [[123201_123200|123201/123200]] || 0.014052 ||  || | -6 6 -2 -1 -1 2 &gt; || chalmersia ||
|| [[123201_123200|123201/123200]] || 0.014052 ||  || | -6 6 -2 -1 -1 2 &gt; || chalmersia ||
||||||||||~ 17-limit (complete!) ||
||||||||||~ 17-limit (complete) ||
|| [[17_16|17/16]] || 104.955 || 17/2&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt; || | -4 0 0 0 0 0 1 &gt; || 17th harmonic (octave reduced) ||
|| [[17_16|17/16]] || 104.955 || 17/2&lt;span style="font-size: 70%; vertical-align: super;"&gt;4&lt;/span&gt; || | -4 0 0 0 0 0 1 &gt; || 17th harmonic (octave reduced) ||
|| [[18_17|18/17]] || 98.955 || (2*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;)/17 || | 1 2 0 0 0 0 -1 &gt; || Arabic lute index finger ||
|| [[18_17|18/17]] || 98.955 || (2*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;)/17 || | 1 2 0 0 0 0 -1 &gt; || Arabic lute index finger ||
Line 231: Line 231:
The list below is ordered by &lt;a class="wiki_link" href="/harmonic%20limit"&gt;harmonic limit&lt;/a&gt;, or the largest prime involved in the prime factorization. &lt;a class="wiki_link" href="/36_35"&gt;36/35&lt;/a&gt;, for instance, is an interval of the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, as it factors to (2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;)/(5*7), while 37/36 would belong to the 37-limit.&lt;br /&gt;
The list below is ordered by &lt;a class="wiki_link" href="/harmonic%20limit"&gt;harmonic limit&lt;/a&gt;, or the largest prime involved in the prime factorization. &lt;a class="wiki_link" href="/36_35"&gt;36/35&lt;/a&gt;, for instance, is an interval of the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, as it factors to (2&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;*3&lt;span style="font-size: 70%; vertical-align: super;"&gt;2&lt;/span&gt;)/(5*7), while 37/36 would belong to the 37-limit.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/St%C3%B8rmer%27s_theorem" rel="nofollow"&gt;Størmer's theorem&lt;/a&gt; guarantees that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8.&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/St%C3%B8rmer%27s_theorem" rel="nofollow"&gt;Størmer's theorem&lt;/a&gt; guarantees that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than 2/1, 3/2, 4/3, and 9/8. &lt;a class="wiki_link_ext" href="https://oeis.org/A145604" rel="nofollow"&gt;OEIS A145604&lt;/a&gt; gives the number of superparticular ratios in each prime limit.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
See also: &lt;a class="wiki_link" href="/Gallery%20of%20Just%20Intervals"&gt;Gallery of Just Intervals&lt;/a&gt;. Many of the names below come from &lt;a class="wiki_link_ext" href="http://www.huygens-fokker.org/docs/intervals.html" rel="nofollow"&gt;here&lt;/a&gt;.&lt;br /&gt;
See also: &lt;a class="wiki_link" href="/Gallery%20of%20Just%20Intervals"&gt;Gallery of Just Intervals&lt;/a&gt;. Many of the names below come from &lt;a class="wiki_link_ext" href="http://www.huygens-fokker.org/docs/intervals.html" rel="nofollow"&gt;here&lt;/a&gt;.&lt;br /&gt;
Line 383: Line 383:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th colspan="5"&gt;7-limit (complete?)&lt;br /&gt;
         &lt;th colspan="5"&gt;7-limit (complete)&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 543: Line 543:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th colspan="5"&gt;11-limit (complete?)&lt;br /&gt;
         &lt;th colspan="5"&gt;11-limit (complete)&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 751: Line 751:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th colspan="5"&gt;13-limit (complete?)&lt;br /&gt;
         &lt;th colspan="5"&gt;13-limit (complete)&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 1,091: Line 1,091:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;th colspan="5"&gt;17-limit (complete!)&lt;br /&gt;
         &lt;th colspan="5"&gt;17-limit (complete)&lt;br /&gt;
&lt;/th&gt;
&lt;/th&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;