Algebraic number: Difference between revisions

ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
No edit summary
 
Line 1: Line 1:
{{Wikipedia}}
{{Wikipedia}}
A [http://mathworld.wolfram.com/UnivariatePolynomial.html univariate polynomial] ''a''<sub>0</sub>''x''<sup>''n''</sup> {{nowrap|+ ''a''<sub>1</sub>''x''<sup>''n'' &minus; 1</sup>}} +&nbsp;… {{nowrap|+ ''a''<sub>''n''</sub>}} whose coefficients ''a''<sub>''i''</sub> are integers (or equivalently, rational numbers) has roots which are known as '''algebraic numbers'''. A root is a value ''r'' for which the [[Wikipedia: Polynomial  #Polynomial functions|polynomial function]] {{nowrap|''f''(''x'') {{=}} ''a''<sub>0</sub>''x''<sup>''n''</sup>}} {{nowrap|+ ''a''<sub>1</sub>''x''<sup>''n'' &minus; 1</sup>}} +&nbsp;… {{nowrap|+ ''a''<sub>''n''</sub>}} satisfies {{nowrap|''f''(''r'') {{=}} 0}}. If ''r'' is a {{w|real number}}, it is a ''real algebraic number''.  
A [http://mathworld.wolfram.com/UnivariatePolynomial.html univariate polynomial] {{nowrap|''a''<sub>0</sub>''x''<sup>''n''</sup> + ''a''<sub>1</sub>''x''<sup>''n'' &minus; 1</sup>}} +&nbsp;… {{nowrap|+ ''a''<sub>''n''</sub>}} whose coefficients ''a''<sub>''i''</sub> are integers (or equivalently, rational numbers) has roots which are known as '''algebraic numbers'''. A root is a value ''r'' for which the [[Wikipedia: Polynomial  #Polynomial functions|polynomial function]] {{nowrap|''f''(''x'') {{=}} ''a''<sub>0</sub>''x''<sup>''n''</sup>}} {{nowrap|+ ''a''<sub>1</sub>''x''<sup>''n'' &minus; 1</sup>}} +&nbsp;… {{nowrap|+ ''a''<sub>''n''</sub>}} satisfies {{nowrap|''f''(''r'') {{=}} 0}}. If ''r'' is a {{w|real number}}, it is a ''real algebraic number''.  


Real algebraic numbers which are not also rational numbers turn up in various places in musical tuning theory. For instance, the intervals in the [[Target_tunings|target tunings]] minimax or least squares are real algebraic numbers. An example of this is 1/4-comma meantone, where 2 and 5 are not tempered but 3 is tempered to 2×5<sup>1/4</sup>, a root of {{nowrap|''x''<sup>4</sup> &minus; 80}}. [[Generators]] for [[linear temperament]]s which are real algebraic numbers can have interesting properties in terms of the {{w|combination tone|combination tones}} they produce. Algebraic numbers are also relevant to JI-agnostic [[delta-rational]] harmony, as tunings of [[mos scale]]s with exact delta-rational values for a certain chord have generators that are algebraic numbers in the linear frequency domain.
Real algebraic numbers which are not also rational numbers turn up in various places in musical tuning theory. For instance, the intervals in the [[Target_tunings|target tunings]] minimax or least squares are real algebraic numbers. An example of this is 1/4-comma meantone, where 2 and 5 are not tempered but 3 is tempered to 2×5<sup>1/4</sup>, a root of {{nowrap|''x''<sup>4</sup> &minus; 80}}. [[Generators]] for [[linear temperament]]s which are real algebraic numbers can have interesting properties in terms of the {{w|combination tone|combination tones}} they produce. Algebraic numbers are also relevant to JI-agnostic [[delta-rational]] harmony, as tunings of [[mos scale]]s with exact delta-rational values for a certain chord have generators that are algebraic numbers in the linear frequency domain.