3L 1s (3/2-equivalent): Difference between revisions
m →Modes: fix typo |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 9: | Line 9: | ||
'''Angel''' is a proposed name for this mos. [[Basic]] Angel is in [[7edf]], which is a very good fifth-based equal tuning similar to [[12edo]]. | '''Angel''' is a proposed name for this mos. [[Basic]] Angel is in [[7edf]], which is a very good fifth-based equal tuning similar to [[12edo]]. | ||
== Notation == | |||
There are 4 main ways to notate the angel scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that 1-5/4-5/3 is fifth-equivalent to a tone cluster of 1-10/9-5/4, it may be more convenient to notate angel scales as repeating at the double, triple or quadruple sesquitave (major ninth, thirteenth or seventeenth i. e. ~pentave), however it does make navigating the [[Generator|genchain]] harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s], a major thirteenth which is the Dorian mode of Bijou[9L 3s] or an ~pentave which is the Mixolydian mode of Hextone[12L 4s]. Since there are exactly 8 naturals in double sesquitave notation, 12 in triple sesquitave notation and 16 in quadruple sesquitave notation, letters A-H (FGABHCDEF) or dozenal or hex digits (0123456789XE0 or D1234567FGACD with flats written C molle or 0123456789ABCDEF0 or G123456789ABCDEFG with flats written F molle) may be used. | There are 4 main ways to notate the angel scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that 1-5/4-5/3 is fifth-equivalent to a tone cluster of 1-10/9-5/4, it may be more convenient to notate angel scales as repeating at the double, triple or quadruple sesquitave (major ninth, thirteenth or seventeenth i. e. ~pentave), however it does make navigating the [[Generator|genchain]] harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s], a major thirteenth which is the Dorian mode of Bijou[9L 3s] or an ~pentave which is the Mixolydian mode of Hextone[12L 4s]. Since there are exactly 8 naturals in double sesquitave notation, 12 in triple sesquitave notation and 16 in quadruple sesquitave notation, letters A-H (FGABHCDEF) or dozenal or hex digits (0123456789XE0 or D1234567FGACD with flats written C molle or 0123456789ABCDEF0 or G123456789ABCDEFG with flats written F molle) may be used. | ||
{| class="wikitable | {| class="wikitable | ||
|+ style="font-size: 105%;" | Cents<ref name=":0">Fractions repeating more than 4 digits written as continued fractions</ref> | |||
|+ | |- | ||
Cents<ref name=":0">Fractions repeating more than 4 digits written as continued fractions</ref> | |||
! colspan="4" |Notation | ! colspan="4" |Notation | ||
!Supersoft | !Supersoft | ||
!Soft | !Soft | ||
!Semisoft | !Semisoft | ||
!Basic | !Basic | ||
!Semihard | !Semihard | ||
!Hard | !Hard | ||
!Superhard | !Superhard | ||
|- | |- | ||
!Diatonic | !Diatonic | ||
!Napoli | !Napoli | ||
!Bijou | !Bijou | ||
!Hextone | !Hextone | ||
!~15edf | !~15edf | ||
!~11edf | !~11edf | ||
!~18edf | !~18edf | ||
!~7edf | !~7edf | ||
!~17edf | !~17edf | ||
!~10edf | !~10edf | ||
!~13edf | !~13edf | ||
|- | |- | ||
|Do#, Sol# | |Do#, Sol# | ||
|F# | |F# | ||
|0#, D# | |0#, D# | ||
|0#, G# | |0#, G# | ||
|1\15 | |1\15 | ||
46; 6.5 | 46; 6.5 | ||
|1\11 | |1\11 | ||
63: 6.{{Overline|3}} | 63: 6.{{Overline|3}} | ||
|2\18 | |2\18 | ||
77; 2, 2.6 | 77; 2, 2.6 | ||
| rowspan="2" |1\7 | | rowspan="2" |1\7 | ||
100 | 100 | ||
|3\17 | |3\17 | ||
124; 7.25 | 124; 7.25 | ||
|2\10 | |2\10 | ||
141; 5.{{Overline|6}} | 141; 5.{{Overline|6}} | ||
|3\13 | |3\13 | ||
163.{{Overline|63}} | 163.{{Overline|63}} | ||
|- | |- | ||
|Reb, Lab | |Reb, Lab | ||
|Gb | |Gb | ||
|1b, 1c | |1b, 1c | ||
|1f | |1f | ||
|3\15 | |3\15 | ||
138; 3.25 | 138; 3.25 | ||
|2\11 | |2\11 | ||
126; 3.1{{Overline|6}} | 126; 3.1{{Overline|6}} | ||
|3\18 | |3\18 | ||
116; 7.75 | 116; 7.75 | ||
|2\17 | |2\17 | ||
82; 1.3{{Overline|18}} | 82; 1.3{{Overline|18}} | ||
|1\10 | |1\10 | ||
70; 1.7 | 70; 1.7 | ||
|1\13 | |1\13 | ||
54.{{Overline|54}} | 54.{{Overline|54}} | ||
|- | |- | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''G''' | |'''G''' | ||
|'''1''' | |'''1''' | ||
|'''1''' | |'''1''' | ||
|'''4\15''' | |'''4\15''' | ||
'''184; 1.625''' | '''184; 1.625''' | ||
|'''3\11''' | |'''3\11''' | ||
'''189; 2.{{Overline|1}}''' | '''189; 2.{{Overline|1}}''' | ||
Line 133: | Line 129: | ||
|'''5\18''' | |'''5\18''' | ||
'''193; 1, 1, 4.{{Overline|6}}''' | '''193; 1, 1, 4.{{Overline|6}}''' | ||
|'''2\7''' | |'''2\7''' | ||
'''200''' | '''200''' | ||
|'''5\17''' | |'''5\17''' | ||
'''206; 1, 8.{{Overline|6}}''' | '''206; 1, 8.{{Overline|6}}''' | ||
|'''3\10''' | |'''3\10''' | ||
'''211; 1, 3.25''' | '''211; 1, 3.25''' | ||
|'''4\13''' | |'''4\13''' | ||
'''218.{{Overline|18}}''' | '''218.{{Overline|18}}''' | ||
|- | |- | ||
|Re#, La# | |Re#, La# | ||
|G# | |G# | ||
|1# | |1# | ||
|1# | |1# | ||
|5\15 | |5\15 | ||
230; 1.3 | 230; 1.3 | ||
|4\11 | |4\11 | ||
252; 1.58{{Overline|3}} | 252; 1.58{{Overline|3}} | ||
|7\18 | |7\18 | ||
270; 1.0{{Overline|3}} | 270; 1.0{{Overline|3}} | ||
| rowspan="2" |3\7 | | rowspan="2" |3\7 | ||
300 | 300 | ||
|8\17 | |8\17 | ||
331; 29 | 331; 29 | ||
|5\10 | |5\10 | ||
352; 1.0625 | 352; 1.0625 | ||
|7\13 | |7\13 | ||
381.{{Overline|81}} | 381.{{Overline|81}} | ||
|- | |- | ||
|Mib, Sib | |Mib, Sib | ||
|Ab | |Ab | ||
|2b, 2c | |2b, 2c | ||
|2f | |2f | ||
|7\15 | |7\15 | ||
323; 13 | 323; 13 | ||
|5\11 | |5\11 | ||
315; 1.2{{Overline|6}} | 315; 1.2{{Overline|6}} | ||
|8\18 | |8\18 | ||
309; 1, 2.1 | 309; 1, 2.1 | ||
|7\17 | |7\17 | ||
289; 1, 1.9 | 289; 1, 1.9 | ||
|4\10 | |4\10 | ||
282; 2.8{{Overline|3}} | 282; 2.8{{Overline|3}} | ||
|5\13 | |5\13 | ||
272.{{Overline|72}} | 272.{{Overline|72}} | ||
|- | |- | ||
|Mi, Si | |Mi, Si | ||
|A | |A | ||
|2 | |2 | ||
|2 | |2 | ||
|8\15 | |8\15 | ||
369; 4.{{Overline|3}} | 369; 4.{{Overline|3}} | ||
|6\11 | |6\11 | ||
378; 1.0{{Overline|5}} | 378; 1.0{{Overline|5}} | ||
|10\18 | |10\18 | ||
387; 10.{{Overline|3}} | 387; 10.{{Overline|3}} | ||
|4\7 | |4\7 | ||
400 | 400 | ||
|10\17 | |10\17 | ||
413; 1, 3.8{{Overline|3}} | 413; 1, 3.8{{Overline|3}} | ||
|6\10 | |6\10 | ||
423; 1.{{Overline|8}} | 423; 1.{{Overline|8}} | ||
|8\13 | |8\13 | ||
436.{{Overline|36}} | 436.{{Overline|36}} | ||
|- | |- | ||
|Mi#, Si# | |Mi#, Si# | ||
|A# | |A# | ||
|2# | |2# | ||
|2# | |2# | ||
|9\15 | |9\15 | ||
415; 2.6 | 415; 2.6 | ||
| rowspan="2" |7\11 | | rowspan="2" |7\11 | ||
442; 9.5 | 442; 9.5 | ||
|12\18 | |12\18 | ||
464; 1.0625 | 464; 1.0625 | ||
|5\7 | |5\7 | ||
500 | 500 | ||
|13\17 | |13\17 | ||
537; 14.5 | 537; 14.5 | ||
|8\10 | |8\10 | ||
564; 1.41{{Overline|6}} | 564; 1.41{{Overline|6}} | ||
|11\13 | |11\13 | ||
600 | 600 | ||
|- | |- | ||
|Fab, Dob | |Fab, Dob | ||
|Bbb | |Bbb | ||
|3b, 3c | |3b, 3c | ||
|3f | |3f | ||
|10\15 | |10\15 | ||
461; 1, 1.1{{Overline|6}} | 461; 1, 1.1{{Overline|6}} | ||
|11\18 | |11\18 | ||
425; 1.24 | 425; 1.24 | ||
|4\7 | |4\7 | ||
400 | 400 | ||
|9\17 | |9\17 | ||
372; 2.41{{Overline|6}} | 372; 2.41{{Overline|6}} | ||
|5\10 | |5\10 | ||
352; 1.0625 | 352; 1.0625 | ||
|6\13 | |6\13 | ||
327.{{Overline|27}} | 327.{{Overline|27}} | ||
|- | |- | ||
|'''Fa, Do''' | |'''Fa, Do''' | ||
|'''Bb''' | |'''Bb''' | ||
|'''3''' | |'''3''' | ||
|'''3''' | |'''3''' | ||
|'''11\15''' | |'''11\15''' | ||
'''507; 1.{{Overline|4}}''' | '''507; 1.{{Overline|4}}''' | ||
|'''8\11''' | |'''8\11''' | ||
'''505; 3.8''' | '''505; 3.8''' | ||
|'''13\18''' | |'''13\18''' | ||
'''503; 4, 2.{{Overline|3}}''' | '''503; 4, 2.{{Overline|3}}''' | ||
|'''5\7''' | |'''5\7''' | ||
'''500''' | '''500''' | ||
|'''12\17''' | |'''12\17''' | ||
'''496; 1.8125''' | '''496; 1.8125''' | ||
|'''7\10''' | |'''7\10''' | ||
'''494; 8.5''' | '''494; 8.5''' | ||
|'''9\13''' | |'''9\13''' | ||
'''490.{{Overline|90}}''' | '''490.{{Overline|90}}''' | ||
|- | |- | ||
|Fa#, Do# | |Fa#, Do# | ||
|B | |B | ||
|3# | |3# | ||
|3# | |3# | ||
|12\15 | |12\15 | ||
553; 1.{{Overline|18}} | 553; 1.{{Overline|18}} | ||
|9\11 | |9\11 | ||
568; 2.375 | 568; 2.375 | ||
|15\18 | |15\18 | ||
580; 1.55 | 580; 1.55 | ||
|6\7 | |6\7 | ||
600 | 600 | ||
|15\17 | |15\17 | ||
620; 1.45 | 620; 1.45 | ||
|9\10 | |9\10 | ||
635; 3.4 | 635; 3.4 | ||
|12\13 | |12\13 | ||
654.{{Overline|54}} | 654.{{Overline|54}} | ||
|- | |- | ||
|Fax, Dox | |Fax, Dox | ||
|B# | |B# | ||
|3x | |3x | ||
|3x | |3x | ||
|13\15 | |13\15 | ||
600 | 600 | ||
| rowspan="2" |10\11 | | rowspan="2" |10\11 | ||
631; 1.{{Overline|72}} | 631; 1.{{Overline|72}} | ||
|17\18 | |17\18 | ||
658; 15.5 | 658; 15.5 | ||
|7\7 | |7\7 | ||
700 | 700 | ||
|18\17 | |18\17 | ||
744; 1.208{{Overline|3}} | 744; 1.208{{Overline|3}} | ||
|11\10 | |11\10 | ||
776; 2.125 | 776; 2.125 | ||
|15\13 | |15\13 | ||
818.{{Overline|18}} | 818.{{Overline|18}} | ||
|- | |- | ||
|Dob, Solb | |Dob, Solb | ||
|Hb | |Hb | ||
Line 416: | Line 412: | ||
564; 1.41{{Overline|6}} | 564; 1.41{{Overline|6}} | ||
|10\13 | |10\13 | ||
545.{{Overline|45}} | 545.{{Overline|45}} | ||
|- | |- | ||
!Do, Sol | !Do, Sol | ||
!H | !H | ||
!4 | !4 | ||
!4 | !4 | ||
!'''15\15''' | !'''15\15''' | ||
'''692; 3.25''' | '''692; 3.25''' | ||
!'''11\11''' | !'''11\11''' | ||
'''694; 1, 2.8''' | '''694; 1, 2.8''' | ||
!'''18\18''' | !'''18\18''' | ||
'''696; 1.291'''{{Overline|6}} | '''696; 1.291'''{{Overline|6}} | ||
!'''7\7''' | !'''7\7''' | ||
'''700''' | '''700''' | ||
!'''17\17''' | !'''17\17''' | ||
'''703; 2, 2.1'''{{Overline|6}} | '''703; 2, 2.1'''{{Overline|6}} | ||
!'''10\10''' | !'''10\10''' | ||
'''705; 1.1'''{{Overline|3}} | '''705; 1.1'''{{Overline|3}} | ||
!'''13\13''' | !'''13\13''' | ||
'''709.'''{{Overline|09}} | '''709.'''{{Overline|09}} | ||
|- | |- | ||
|Do#, Sol# | |Do#, Sol# | ||
|Η# | |Η# | ||
|4# | |4# | ||
|4# | |4# | ||
|16\15 | |16\15 | ||
738; 2.1{{Overline|6}} | 738; 2.1{{Overline|6}} | ||
|12\11 | |12\11 | ||
757; 1, 8.5 | 757; 1, 8.5 | ||
| 20\18 | | 20\18 | ||
774; 5, 6 | 774; 5, 6 | ||
| rowspan="2" | 8\8 | | rowspan="2" | 8\8 | ||
800 | 800 | ||
|20\17 | |20\17 | ||
827; 1, 1.41{{Overline|6}} | 827; 1, 1.41{{Overline|6}} | ||
|12\10 | |12\10 | ||
847; 17 | 847; 17 | ||
| 16\13 | | 16\13 | ||
872.{{Overline|72}} | 872.{{Overline|72}} | ||
|- | |- | ||
|Reb, Lab | |Reb, Lab | ||
|Cb | |Cb | ||
|5b, 5c | |5b, 5c | ||
|5 | |5 | ||
|18\15 | |18\15 | ||
830; 1.3 | 830; 1.3 | ||
|13\11 | |13\11 | ||
821; 19 | 821; 19 | ||
| 21\18 | | 21\18 | ||
812; 1, 9.{{Overline|3}} | 812; 1, 9.{{Overline|3}} | ||
| 19\17 | | 19\17 | ||
786; 4.8{{Overline|3}} | 786; 4.8{{Overline|3}} | ||
| 11\10 | | 11\10 | ||
776; 2.125 | 776; 2.125 | ||
| 14\13 | | 14\13 | ||
763.{{Overline|63}} | 763.{{Overline|63}} | ||
|- | |- | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''C''' | |'''C''' | ||
|'''5''' | |'''5''' | ||
|'''5''' | |'''5''' | ||
|'''19\15''' | |'''19\15''' | ||
'''876; 1.08{{Overline|3}}''' | '''876; 1.08{{Overline|3}}''' | ||
|'''14\11''' | |'''14\11''' | ||
'''884; 4.75''' | '''884; 4.75''' | ||
|'''23\18''' | |'''23\18''' | ||
'''890; 3.1''' | '''890; 3.1''' | ||
|'''9\5''' | |'''9\5''' | ||
'''900''' | '''900''' | ||
|'''22\17''' | |'''22\17''' | ||
'''910; 2.9''' | '''910; 2.9''' | ||
|'''13\10''' | |'''13\10''' | ||
'''917; 1.{{Overline|54}}''' | '''917; 1.{{Overline|54}}''' | ||
|'''17\13''' | |'''17\13''' | ||
'''927.{{Overline|27}}''' | '''927.{{Overline|27}}''' | ||
|- | |- | ||
| Re#, La# | | Re#, La# | ||
|C# | |C# | ||
| 5# | | 5# | ||
|5# | |5# | ||
|20\15 | |20\15 | ||
923: 13 | 923: 13 | ||
|15\11 | |15\11 | ||
947; 2, 1.4 | 947; 2, 1.4 | ||
|25\18 | |25\18 | ||
967; 1, 2.875 | 967; 1, 2.875 | ||
| rowspan="2" |10\7 | | rowspan="2" |10\7 | ||
1000 | 1000 | ||
|25\17 | |25\17 | ||
1034; 2, 14 | 1034; 2, 14 | ||
| 15\10 | | 15\10 | ||
1058; 1, 4.{{Overline|6}} | 1058; 1, 4.{{Overline|6}} | ||
|20\13 | |20\13 | ||
1090.{{Overline|90}} | 1090.{{Overline|90}} | ||
|- | |- | ||
|Mib, Sib | |Mib, Sib | ||
|Db | |Db | ||
|6b, 6c | |6b, 6c | ||
|6f | |6f | ||
|22\15 | |22\15 | ||
1015; 2.6 | 1015; 2.6 | ||
|16\11 | |16\11 | ||
1010; 1.9 | 1010; 1.9 | ||
| 26\18 | | 26\18 | ||
1006; 2, 4.{{Overline|6}} | 1006; 2, 4.{{Overline|6}} | ||
|24\17 | |24\17 | ||
993; 9.{{Overline|6}} | 993; 9.{{Overline|6}} | ||
|14\10 | |14\10 | ||
988; 4.25 | 988; 4.25 | ||
|18\13 | |18\13 | ||
981.{{Overline|81}} | 981.{{Overline|81}} | ||
|- | |- | ||
|Mi, Si | |Mi, Si | ||
|D | |D | ||
|6 | |6 | ||
|6 | |6 | ||
|23\15 | |23\15 | ||
1061; 1, 1.1{{Overline|6}} | 1061; 1, 1.1{{Overline|6}} | ||
|17\11 | |17\11 | ||
1073; 1, 2.1{{Overline|6}} | 1073; 1, 2.1{{Overline|6}} | ||
| 28\18 | | 28\18 | ||
1083; 1.{{Overline|148}} | 1083; 1.{{Overline|148}} | ||
|11\7 | |11\7 | ||
1100 | 1100 | ||
| 27\17 | | 27\17 | ||
1117; 4, 7 | 1117; 4, 7 | ||
| 16\10 | | 16\10 | ||
1129; 2, 2.{{Overline|3}} | 1129; 2, 2.{{Overline|3}} | ||
| 21\9 | | 21\9 | ||
1145.{{Overline|45}} | 1145.{{Overline|45}} | ||
|- | |- | ||
|Mi#, Si# | |Mi#, Si# | ||
| D# | | D# | ||
|6# | |6# | ||
|6# | |6# | ||
| 24\15 | | 24\15 | ||
1107; 1.{{Overline|4}} | 1107; 1.{{Overline|4}} | ||
| rowspan="2" | 18\11 | | rowspan="2" | 18\11 | ||
1136; 1.1875 | 1136; 1.1875 | ||
|30\18 | |30\18 | ||
1161; 3.{{Overline|4}} | 1161; 3.{{Overline|4}} | ||
| 12\7 | | 12\7 | ||
1200 | 1200 | ||
|30\17 | |30\17 | ||
1241; 2.{{Overline|63}} | 1241; 2.{{Overline|63}} | ||
|18\10 | |18\10 | ||
1270; 1.7 | 1270; 1.7 | ||
|24\13 | |24\13 | ||
1309.{{Overline|09}} | 1309.{{Overline|09}} | ||
|- | |- | ||
|Fab, Dob | |Fab, Dob | ||
|Ebb | |Ebb | ||
|7b, 7c | |7b, 7c | ||
|7f | |7f | ||
|25\15 | |25\15 | ||
1153; 1.{{Overline|18}} | 1153; 1.{{Overline|18}} | ||
|29\18 | |29\18 | ||
1121; 1, 1, 2.6 | 1121; 1, 1, 2.6 | ||
| 11\7 | | 11\7 | ||
1100 | 1100 | ||
|26\17 | |26\17 | ||
1075; 1.16 | 1075; 1.16 | ||
|15\10 | |15\10 | ||
1058; 1, 4.{{Overline|6}} | 1058; 1, 4.{{Overline|6}} | ||
|19\13 | |19\13 | ||
1036.{{Overline|36}} | 1036.{{Overline|36}} | ||
|- | |- | ||
|'''Fa, Do''' | |'''Fa, Do''' | ||
|'''Eb''' | |'''Eb''' | ||
|'''7''' | |'''7''' | ||
|'''7''' | |'''7''' | ||
|'''26\15''' | |'''26\15''' | ||
'''1200''' | '''1200''' | ||
|'''19\11''' | |'''19\11''' | ||
'''1200''' | '''1200''' | ||
|'''31\18''' | |'''31\18''' | ||
'''1200''' | '''1200''' | ||
|'''12\7''' | |'''12\7''' | ||
'''1200''' | '''1200''' | ||
|'''29\17''' | |'''29\17''' | ||
'''1200''' | '''1200''' | ||
|'''17\10''' | |'''17\10''' | ||
'''1200''' | '''1200''' | ||
|'''22\13''' | |'''22\13''' | ||
'''1200''' | '''1200''' | ||
|- | |- | ||
|Fa#, Do# | |Fa#, Do# | ||
| E | | E | ||
|7# | |7# | ||
|7# | |7# | ||
|27\15 | |27\15 | ||
1246; 6.5 | 1246; 6.5 | ||
|20\11 | |20\11 | ||
1263; 6.{{Overline|3}} | 1263; 6.{{Overline|3}} | ||
| 33\18 | | 33\18 | ||
1277; 2, 2.6 | 1277; 2, 2.6 | ||
|13\7 | |13\7 | ||
1300 | 1300 | ||
|32\17 | |32\17 | ||
1324; 7.25 | 1324; 7.25 | ||
|19\10 | |19\10 | ||
1341; 5.{{Overline|6}} | 1341; 5.{{Overline|6}} | ||
|25\13 | |25\13 | ||
1363.{{Overline|63}} | 1363.{{Overline|63}} | ||
|- | |- | ||
|Fax, Dox | |Fax, Dox | ||
|E# | |E# | ||
|7x | |7x | ||
|7x | |7x | ||
|28\15 | |28\15 | ||
1292; 3.25 | 1292; 3.25 | ||
| rowspan="2" |21\11 | | rowspan="2" |21\11 | ||
1326; 3.1{{Overline|6}} | 1326; 3.1{{Overline|6}} | ||
|35\18 | |35\18 | ||
1354; 1, 5.2 | 1354; 1, 5.2 | ||
| 14\7 | | 14\7 | ||
1400 | 1400 | ||
|35\17 | |35\17 | ||
1448; 3.625 | 1448; 3.625 | ||
|21\10 | |21\10 | ||
1482; 2.8{{Overline|3}} | 1482; 2.8{{Overline|3}} | ||
|28\13 | |28\13 | ||
1527.{{Overline|27}} | 1527.{{Overline|27}} | ||
|- | |- | ||
|Dob, Solb | |Dob, Solb | ||
|Fb | |Fb | ||
|8b, Fc | |8b, Fc | ||
|8f | |8f | ||
|29\15 | |29\15 | ||
1338; 2.1{{Overline|6}} | 1338; 2.1{{Overline|6}} | ||
|34\18 | |34\18 | ||
1316; 7.75 | 1316; 7.75 | ||
|13\7 | |13\7 | ||
1300 | 1300 | ||
|31\17 | |31\17 | ||
1282; 1.3{{Overline|18}} | 1282; 1.3{{Overline|18}} | ||
|18\10 | |18\10 | ||
1270; 1.7 | 1270; 1.7 | ||
| 23\13 | | 23\13 | ||
1254.{{Overline|54}} | 1254.{{Overline|54}} | ||
|- | |- | ||
!Do, Sol | !Do, Sol | ||
!F | !F | ||
! 8, F | ! 8, F | ||
!8 | !8 | ||
! 30\15 | ! 30\15 | ||
1384; 1.625 | 1384; 1.625 | ||
! 22\11 | ! 22\11 | ||
1389; 2.{{Overline|1}} | 1389; 2.{{Overline|1}} | ||
!36\18 | !36\18 | ||
1393; 1, 1, 4.{{Overline|6}} | 1393; 1, 1, 4.{{Overline|6}} | ||
!14\7 | !14\7 | ||
1400 | 1400 | ||
! 34\17 | ! 34\17 | ||
1406; 1, 8.{{Overline|6}} | 1406; 1, 8.{{Overline|6}} | ||
! 20\10 | ! 20\10 | ||
1411; 1, 3.25 | 1411; 1, 3.25 | ||
!26\13 | !26\13 | ||
1418.{{Overline|18}} | 1418.{{Overline|18}} | ||
|- | |- | ||
|Do#, Sol# | |Do#, Sol# | ||
|F# | |F# | ||
|8#, F# | |8#, F# | ||
|8# | |8# | ||
|31\15 | |31\15 | ||
1430; 1.3 | 1430; 1.3 | ||
| 23\11 | | 23\11 | ||
1452; 1.58{{Overline|3}} | 1452; 1.58{{Overline|3}} | ||
|38\18 | |38\18 | ||
1470; 1.0{{Overline|3}} | 1470; 1.0{{Overline|3}} | ||
| rowspan="2" |15\7 | | rowspan="2" |15\7 | ||
1500 | 1500 | ||
| 37\17 | | 37\17 | ||
1531; 29 | 1531; 29 | ||
| 22\10 | | 22\10 | ||
1552; 1.0625 | 1552; 1.0625 | ||
|29\13 | |29\13 | ||
1581.{{Overline|81}} | 1581.{{Overline|81}} | ||
|- | |- | ||
| Reb, Lab | | Reb, Lab | ||
|Gb | |Gb | ||
|9b, Gc | |9b, Gc | ||
|9f | |9f | ||
|33\15 | |33\15 | ||
1523; 13 | 1523; 13 | ||
|24\11 | |24\11 | ||
1515; 1.2{{Overline|6}} | 1515; 1.2{{Overline|6}} | ||
| 39\18 | | 39\18 | ||
1509; 1, 2.1 | 1509; 1, 2.1 | ||
|36\17 | |36\17 | ||
1489; 1, 1.9 | 1489; 1, 1.9 | ||
|21\10 | |21\10 | ||
1482; 2.8{{Overline|3}} | 1482; 2.8{{Overline|3}} | ||
|27\13 | |27\13 | ||
1472.{{Overline|72}} | 1472.{{Overline|72}} | ||
|- | |- | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''G''' | |'''G''' | ||
|'''9, G''' | |'''9, G''' | ||
|9 | |9 | ||
|'''34\15''' | |'''34\15''' | ||
'''1569; 4.{{Overline|3}}''' | '''1569; 4.{{Overline|3}}''' | ||
|'''25\11''' | |'''25\11''' | ||
'''1578; 1.0{{Overline|5}}''' | '''1578; 1.0{{Overline|5}}''' | ||
|'''41\18''' | |'''41\18''' | ||
'''1587; 10.{{Overline|3}}''' | '''1587; 10.{{Overline|3}}''' | ||
|'''16\7''' | |'''16\7''' | ||
'''1600''' | '''1600''' | ||
|'''39\17''' | |'''39\17''' | ||
'''1613; 1, 3.8{{Overline|3}}''' | '''1613; 1, 3.8{{Overline|3}}''' | ||
|'''23\10''' | |'''23\10''' | ||
'''1623; 1.{{Overline|8}}''' | '''1623; 1.{{Overline|8}}''' | ||
|'''30\13''' | |'''30\13''' | ||
'''1636.{{Overline|36}}''' | '''1636.{{Overline|36}}''' | ||
|- | |- | ||
|Re#, La# | |Re#, La# | ||
|G# | |G# | ||
|9#, G# | |9#, G# | ||
|9# | |9# | ||
|35\15 | |35\15 | ||
1615; 2.6 | 1615; 2.6 | ||
|26\11 | |26\11 | ||
1642; 9.5 | 1642; 9.5 | ||
| 43\18 | | 43\18 | ||
1664; 1.0625 | 1664; 1.0625 | ||
| rowspan="2" | 17\7 | | rowspan="2" | 17\7 | ||
1700 | 1700 | ||
|42\17 | |42\17 | ||
1737; 14.5 | 1737; 14.5 | ||
|25\10 | |25\10 | ||
1764; 1.41{{Overline|6}} | 1764; 1.41{{Overline|6}} | ||
|33\13 | |33\13 | ||
1800 | 1800 | ||
|- | |- | ||
|Mib, Sib | |Mib, Sib | ||
|Ab | |Ab | ||
|Xb, Ac | |Xb, Ac | ||
|Af | |Af | ||
|37\15 | |37\15 | ||
1707; 1.{{Overline|4}} | 1707; 1.{{Overline|4}} | ||
|27\11 | |27\11 | ||
1705; 3.8 | 1705; 3.8 | ||
|44\18 | |44\18 | ||
1703; 4, 2.{{Overline|3}} | 1703; 4, 2.{{Overline|3}} | ||
|41\17 | |41\17 | ||
1696; 1.8125 | 1696; 1.8125 | ||
|24\10 | |24\10 | ||
1694; 8.5 | 1694; 8.5 | ||
|31\13 | |31\13 | ||
1690.{{Overline|90}} | 1690.{{Overline|90}} | ||
|- | |- | ||
|Mi, Si | |Mi, Si | ||
|A | |A | ||
|X, A | |X, A | ||
|A | |A | ||
|38\15 | |38\15 | ||
1753; 1.{{Overline|18}} | 1753; 1.{{Overline|18}} | ||
|28\11 | |28\11 | ||
1768; 2.375 | 1768; 2.375 | ||
|46\18 | |46\18 | ||
1780; 1.55 | 1780; 1.55 | ||
|18\7 | |18\7 | ||
1800 | 1800 | ||
|44\17 | |44\17 | ||
1820; 1.45 | 1820; 1.45 | ||
|26\10 | |26\10 | ||
1835; 3.4 | 1835; 3.4 | ||
|34\13 | |34\13 | ||
1854.{{Overline|54}} | 1854.{{Overline|54}} | ||
|- | |- | ||
|Mi#, Si# | |Mi#, Si# | ||
| A# | | A# | ||
|X#, A# | |X#, A# | ||
|A# | |A# | ||
|39\15 | |39\15 | ||
1800 | 1800 | ||
| rowspan="2" |29\11 | | rowspan="2" |29\11 | ||
1831; 1.{{Overline|72}} | 1831; 1.{{Overline|72}} | ||
|48\18 | |48\18 | ||
1858; 15.5 | 1858; 15.5 | ||
|19\7 | |19\7 | ||
1900 | 1900 | ||
|47\17 | |47\17 | ||
1944; 1.208{{Overline|3}} | 1944; 1.208{{Overline|3}} | ||
|28\10 | |28\10 | ||
1976; 2.125 | 1976; 2.125 | ||
| 37\13 | | 37\13 | ||
2018.{{Overline|18}} | 2018.{{Overline|18}} | ||
|- | |- | ||
|Fab, Dob | |Fab, Dob | ||
|Bbb | |Bbb | ||
|Ebb, Ccc | |Ebb, Ccc | ||
|Bf | |Bf | ||
|40\15 | |40\15 | ||
1846; 6.5 | 1846; 6.5 | ||
|47\18 | |47\18 | ||
1819; 2.{{Overline|81}} | 1819; 2.{{Overline|81}} | ||
| 18\7 | | 18\7 | ||
1800 | 1800 | ||
|43\17 | |43\17 | ||
1779; 3.{{Overline|2}} | 1779; 3.{{Overline|2}} | ||
|25\10 | |25\10 | ||
1764; 1.41{{Overline|6}} | 1764; 1.41{{Overline|6}} | ||
| 32\13 | | 32\13 | ||
1745.{{Overline|45}} | 1745.{{Overline|45}} | ||
|- | |- | ||
|'''Fa, Do''' | |'''Fa, Do''' | ||
|'''Bb''' | |'''Bb''' | ||
|'''Eb, Cc''' | |'''Eb, Cc''' | ||
|'''B''' | |'''B''' | ||
|'''41\15''' | |'''41\15''' | ||
'''1892; 3.25''' | '''1892; 3.25''' | ||
|'''30\11''' | |'''30\11''' | ||
'''1894; 1, 2.8''' | '''1894; 1, 2.8''' | ||
|'''49\18''' | |'''49\18''' | ||
'''1896; 1.291{{Overline|6}}''' | '''1896; 1.291{{Overline|6}}''' | ||
|'''19\7''' | |'''19\7''' | ||
'''1900''' | '''1900''' | ||
|'''46\17''' | |'''46\17''' | ||
'''1903; 2.1{{Overline|6}}''' | '''1903; 2.1{{Overline|6}}''' | ||
|'''27\10''' | |'''27\10''' | ||
'''1905; 1.1{{Overline|3}}''' | '''1905; 1.1{{Overline|3}}''' | ||
|'''35\13''' | |'''35\13''' | ||
'''1909.{{Overline|09}}''' | '''1909.{{Overline|09}}''' | ||
|- | |- | ||
|Fa#, Do# | |Fa#, Do# | ||
| B | | B | ||
|E, C | |E, C | ||
|B# | |B# | ||
|42\15 | |42\15 | ||
1938; 2.1{{Overline|6}} | 1938; 2.1{{Overline|6}} | ||
|31\11 | |31\11 | ||
1957; 1, 8.5 | 1957; 1, 8.5 | ||
| 51\18 | | 51\18 | ||
1974; 5.1{{Overline|6}} | 1974; 5.1{{Overline|6}} | ||
|20\7 | |20\7 | ||
2000 | 2000 | ||
|49\17 | |49\17 | ||
2027; 1, 1.41{{Overline|6}} | 2027; 1, 1.41{{Overline|6}} | ||
|29\10 | |29\10 | ||
2047; 17 | 2047; 17 | ||
|38\13 | |38\13 | ||
2072.{{Overline|72}} | 2072.{{Overline|72}} | ||
|- | |- | ||
|Fax, Dox | |Fax, Dox | ||
|B# | |B# | ||
|Ex, Cx | |Ex, Cx | ||
|Bx | |Bx | ||
|43\15 | |43\15 | ||
1984; 1.625 | 1984; 1.625 | ||
| rowspan="2" |32\11 | | rowspan="2" |32\11 | ||
2021; 19 | 2021; 19 | ||
|53\18 | |53\18 | ||
2051; 1, 1, 1, 1.4 | 2051; 1, 1, 1, 1.4 | ||
|21\7 | |21\7 | ||
2100 | 2100 | ||
|52\17 | |52\17 | ||
2151; 2.625 | 2151; 2.625 | ||
|31\10 | |31\10 | ||
2188; 4.25 | 2188; 4.25 | ||
|41\13 | |41\13 | ||
2236.{{Overline|36}} | 2236.{{Overline|36}} | ||
|- | |- | ||
|Dob, Solb | |Dob, Solb | ||
|Hb | |Hb | ||
|0b, Dc | |0b, Dc | ||
|Cf | |Cf | ||
|44\15 | |44\15 | ||
2030; 1.3 | 2030; 1.3 | ||
|52\18 | |52\18 | ||
2012; 1, 9,{{Overline|3}} | 2012; 1, 9,{{Overline|3}} | ||
|20\7 | |20\7 | ||
2000 | 2000 | ||
|48\17 | |48\17 | ||
1986; 4.8{{Overline|3}} | 1986; 4.8{{Overline|3}} | ||
|28\10 | |28\10 | ||
1976; 2.125 | 1976; 2.125 | ||
|36\13 | |36\13 | ||
1963.{{Overline|63}} | 1963.{{Overline|63}} | ||
|- | |- | ||
!Do, Sol | !Do, Sol | ||
!H | !H | ||
!0, D | !0, D | ||
!C | !C | ||
!45\15 | !45\15 | ||
2076; 1.08'''{{Overline|3}}''' | 2076; 1.08'''{{Overline|3}}''' | ||
!33\11 | !33\11 | ||
2084; 4.75 | 2084; 4.75 | ||
!54\18 | !54\18 | ||
2090; 3.1 | 2090; 3.1 | ||
!21\7 | !21\7 | ||
2100 | 2100 | ||
!51\17 | !51\17 | ||
2110; 2.9 | 2110; 2.9 | ||
!30\10 | !30\10 | ||
2117; 1.{{Overline|54}} | 2117; 1.{{Overline|54}} | ||
!39\13 | !39\13 | ||
2127.{{Overline|27}} | 2127.{{Overline|27}} | ||
|- | |- | ||
Line 1,393: | Line 1,389: | ||
2193; 9.{{Overline|6}} | 2193; 9.{{Overline|6}} | ||
|31\10 | |31\10 | ||
2188; 4.25 | 2188; 4.25 | ||
|40\13 | |40\13 | ||
Line 2,971: | Line 2,967: | ||
[[Optimal ET sequence]]: ~(7edf, 10edf, 13edf, 16edf) | [[Optimal ET sequence]]: ~(7edf, 10edf, 13edf, 16edf) | ||
===Scale tree=== | ===Scale tree=== | ||
The spectrum looks like this: | The spectrum looks like this: | ||
{{ | {{MOS tuning spectrum | ||
| 3/2 = Napoli-Meantone starts here | |||
| 2/1 = Napoli-Meantone ends, Napoli-Pythagorean begins | |||
| 5/2 = Napoli-Neogothic heartland is from here... | |||
| 8/3 = ...to here | |||
| 3/1 = Napoli-Pythagorean ends, Napoli-Archy begins | |||
| 5/1 = Napoli-Archy ends | |||
}} |