Kees semi-height: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 480002960 - Original comment: **
Wikispaces>Omegatron
**Imported revision 520874412 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-12-31 10:29:47 UTC</tt>.<br>
: This revision was by author [[User:Omegatron|Omegatron]] and made on <tt>2014-09-04 17:51:38 UTC</tt>.<br>
: The original revision id was <tt>480002960</tt>.<br>
: The original revision id was <tt>520874412</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Given a ratio of positive integers p/q, the //Kees height// is found by first removing factors of two and all common factors from p/q, producing a ratio a/b of relatively prime odd positive integers. Then kees(p/q) = kees(a/b) = max(a, b). The Kees "expressibility" is then the logarithm base two of the Kees height. Expressibility can be extended to all vectors in [[Monzos and Interval Space|interval space]], by means of the formula KE(|m2 m3 m5... mp&gt;) = (|m3 + m5+ ... +mp| + |m3| + |m5| + ... + |mp|)/2, where "KE" denotes Kees expressibility and |m2 m3 m5 ... mp&gt; is a vector with weighted coordinates in interval space.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Given a ratio of positive integers p/q, the //Kees [[height]] // is found by first removing factors of two and all common factors from p/q, producing a ratio a/b of relatively prime odd positive integers. Then kees(p/q) = kees(a/b) = max(a, b). The Kees "expressibility" is then the logarithm base two of the Kees height. Expressibility can be extended to all vectors in [[Monzos and Interval Space|interval space]], by means of the formula KE(|m2 m3 m5... mp&gt;) = (|m3 + m5+ ... +mp| + |m3| + |m5| + ... + |mp|)/2, where "KE" denotes Kees expressibility and |m2 m3 m5 ... mp&gt; is a vector with weighted coordinates in interval space.


The set of JI intervals with Kees height less than or equal to an odd integer q comprises the [[Odd limit|q odd limit]]
The set of JI intervals with Kees height less than or equal to an odd integer q comprises the [[Odd limit|q odd limit]]
Line 20: Line 20:
||= 2/1 ||= 1 ||</pre></div>
||= 2/1 ||= 1 ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Kees Height&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Given a ratio of positive integers p/q, the &lt;em&gt;Kees height&lt;/em&gt; is found by first removing factors of two and all common factors from p/q, producing a ratio a/b of relatively prime odd positive integers. Then kees(p/q) = kees(a/b) = max(a, b). The Kees &amp;quot;expressibility&amp;quot; is then the logarithm base two of the Kees height. Expressibility can be extended to all vectors in &lt;a class="wiki_link" href="/Monzos%20and%20Interval%20Space"&gt;interval space&lt;/a&gt;, by means of the formula KE(|m2 m3 m5... mp&amp;gt;) = (|m3 + m5+ ... +mp| + |m3| + |m5| + ... + |mp|)/2, where &amp;quot;KE&amp;quot; denotes Kees expressibility and |m2 m3 m5 ... mp&amp;gt; is a vector with weighted coordinates in interval space.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Kees Height&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Given a ratio of positive integers p/q, the &lt;em&gt;Kees &lt;a class="wiki_link" href="/height"&gt;height&lt;/a&gt; &lt;/em&gt; is found by first removing factors of two and all common factors from p/q, producing a ratio a/b of relatively prime odd positive integers. Then kees(p/q) = kees(a/b) = max(a, b). The Kees &amp;quot;expressibility&amp;quot; is then the logarithm base two of the Kees height. Expressibility can be extended to all vectors in &lt;a class="wiki_link" href="/Monzos%20and%20Interval%20Space"&gt;interval space&lt;/a&gt;, by means of the formula KE(|m2 m3 m5... mp&amp;gt;) = (|m3 + m5+ ... +mp| + |m3| + |m5| + ... + |mp|)/2, where &amp;quot;KE&amp;quot; denotes Kees expressibility and |m2 m3 m5 ... mp&amp;gt; is a vector with weighted coordinates in interval space.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The set of JI intervals with Kees height less than or equal to an odd integer q comprises the &lt;a class="wiki_link" href="/Odd%20limit"&gt;q odd limit&lt;/a&gt;&lt;br /&gt;
The set of JI intervals with Kees height less than or equal to an odd integer q comprises the &lt;a class="wiki_link" href="/Odd%20limit"&gt;q odd limit&lt;/a&gt;&lt;br /&gt;