Kees semi-height: Difference between revisions

Wikispaces>Omegatron
**Imported revision 520874412 - Original comment: **
Wikispaces>mbattaglia1
**Imported revision 576671173 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Omegatron|Omegatron]] and made on <tt>2014-09-04 17:51:38 UTC</tt>.<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2016-03-05 22:19:28 UTC</tt>.<br>
: The original revision id was <tt>520874412</tt>.<br>
: The original revision id was <tt>576671173</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Given a ratio of positive integers p/q, the //Kees [[height]] // is found by first removing factors of two and all common factors from p/q, producing a ratio a/b of relatively prime odd positive integers. Then kees(p/q) = kees(a/b) = max(a, b). The Kees "expressibility" is then the logarithm base two of the Kees height. Expressibility can be extended to all vectors in [[Monzos and Interval Space|interval space]], by means of the formula KE(|m2 m3 m5... mp&gt;) = (|m3 + m5+ ... +mp| + |m3| + |m5| + ... + |mp|)/2, where "KE" denotes Kees expressibility and |m2 m3 m5 ... mp&gt; is a vector with weighted coordinates in interval space.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Given a ratio of positive integers p/q, the //Kees [[height]]// is found by first removing factors of two and all common factors from p/q, producing a ratio a/b of relatively prime odd positive integers. Then kees(p/q) = kees(a/b) = max(a, b). The Kees "expressibility" is then the logarithm base two of the Kees height.


The set of JI intervals with Kees height less than or equal to an odd integer q comprises the [[Odd limit|q odd limit]]
 
Expressibility can be extended to all vectors in [[Monzos and Interval Space|interval space]], by means of the formula KE(|m2 m3 m5... mp&gt;) = (|m3 + m5+ ... +mp| + |m3| + |m5| + ... + |mp|)/2, where "KE" denotes Kees expressibility and |m2 m3 m5 ... mp&gt; is a vector with weighted coordinates in interval space. It can also be thought of as the quotient norm of Weil height, mod 2/1. Additionally, it can&lt;span style="line-height: 1.5;"&gt; be extended to tempered intervals using the quotient norm.&lt;/span&gt;
 
The set of JI intervals with Kees height less than or equal to an odd integer q comprises the [[Odd limit|q odd limit]].


The point of Kees height is to serve as a metric/height on [[Pitch class|JI pitch classes]] corresponding to [[Benedetti height]] on pitches. The measure was proposed by [[Kees van Prooijen]].
The point of Kees height is to serve as a metric/height on [[Pitch class|JI pitch classes]] corresponding to [[Benedetti height]] on pitches. The measure was proposed by [[Kees van Prooijen]].
Line 14: Line 17:
[[http://www.kees.cc/tuning/perbl.html|Kees tuning pages]]
[[http://www.kees.cc/tuning/perbl.html|Kees tuning pages]]


== Examples ==
==Examples==  
||= **interval** ||= **kees height** ||
||= **interval** ||= **kees height** ||
||= 5/3 ||= 5 ||
||= 5/3 ||= 5 ||
Line 20: Line 23:
||= 2/1 ||= 1 ||</pre></div>
||= 2/1 ||= 1 ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Kees Height&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Given a ratio of positive integers p/q, the &lt;em&gt;Kees &lt;a class="wiki_link" href="/height"&gt;height&lt;/a&gt; &lt;/em&gt; is found by first removing factors of two and all common factors from p/q, producing a ratio a/b of relatively prime odd positive integers. Then kees(p/q) = kees(a/b) = max(a, b). The Kees &amp;quot;expressibility&amp;quot; is then the logarithm base two of the Kees height. Expressibility can be extended to all vectors in &lt;a class="wiki_link" href="/Monzos%20and%20Interval%20Space"&gt;interval space&lt;/a&gt;, by means of the formula KE(|m2 m3 m5... mp&amp;gt;) = (|m3 + m5+ ... +mp| + |m3| + |m5| + ... + |mp|)/2, where &amp;quot;KE&amp;quot; denotes Kees expressibility and |m2 m3 m5 ... mp&amp;gt; is a vector with weighted coordinates in interval space.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Kees Height&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Given a ratio of positive integers p/q, the &lt;em&gt;Kees &lt;a class="wiki_link" href="/height"&gt;height&lt;/a&gt;&lt;/em&gt; is found by first removing factors of two and all common factors from p/q, producing a ratio a/b of relatively prime odd positive integers. Then kees(p/q) = kees(a/b) = max(a, b). The Kees &amp;quot;expressibility&amp;quot; is then the logarithm base two of the Kees height.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The set of JI intervals with Kees height less than or equal to an odd integer q comprises the &lt;a class="wiki_link" href="/Odd%20limit"&gt;q odd limit&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
Expressibility can be extended to all vectors in &lt;a class="wiki_link" href="/Monzos%20and%20Interval%20Space"&gt;interval space&lt;/a&gt;, by means of the formula KE(|m2 m3 m5... mp&amp;gt;) = (|m3 + m5+ ... +mp| + |m3| + |m5| + ... + |mp|)/2, where &amp;quot;KE&amp;quot; denotes Kees expressibility and |m2 m3 m5 ... mp&amp;gt; is a vector with weighted coordinates in interval space. It can also be thought of as the quotient norm of Weil height, mod 2/1. Additionally, it can&lt;span style="line-height: 1.5;"&gt; be extended to tempered intervals using the quotient norm.&lt;/span&gt;&lt;br /&gt;
&lt;br /&gt;
The set of JI intervals with Kees height less than or equal to an odd integer q comprises the &lt;a class="wiki_link" href="/Odd%20limit"&gt;q odd limit&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The point of Kees height is to serve as a metric/height on &lt;a class="wiki_link" href="/Pitch%20class"&gt;JI pitch classes&lt;/a&gt; corresponding to &lt;a class="wiki_link" href="/Benedetti%20height"&gt;Benedetti height&lt;/a&gt; on pitches. The measure was proposed by &lt;a class="wiki_link" href="/Kees%20van%20Prooijen"&gt;Kees van Prooijen&lt;/a&gt;.&lt;br /&gt;
The point of Kees height is to serve as a metric/height on &lt;a class="wiki_link" href="/Pitch%20class"&gt;JI pitch classes&lt;/a&gt; corresponding to &lt;a class="wiki_link" href="/Benedetti%20height"&gt;Benedetti height&lt;/a&gt; on pitches. The measure was proposed by &lt;a class="wiki_link" href="/Kees%20van%20Prooijen"&gt;Kees van Prooijen&lt;/a&gt;.&lt;br /&gt;
Line 28: Line 34:
&lt;a class="wiki_link_ext" href="http://www.kees.cc/tuning/perbl.html" rel="nofollow"&gt;Kees tuning pages&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.kees.cc/tuning/perbl.html" rel="nofollow"&gt;Kees tuning pages&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Examples"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; Examples &lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Examples"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Examples&lt;/h2&gt;
 


&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;