Just intonation subgroup: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 143688563 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 143693319 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-05-21 04:15:13 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-05-21 05:13:38 UTC</tt>.<br>
: The original revision id was <tt>143688563</tt>.<br>
: The original revision id was <tt>143693319</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 12: Line 12:
A canonical naming system for just intonation subgroups is to give a [[Normal lists|normal interval list]] for the generators of the group, which will also show the [[http://en.wikipedia.org/wiki/Rank_of_an_abelian_group|rank]] of the group by the number of generators in the list. Below we give some of the more interesting subgroup systems. If a scale is given with the system, it means the subgroup is generated by the notes of the scale.
A canonical naming system for just intonation subgroups is to give a [[Normal lists|normal interval list]] for the generators of the group, which will also show the [[http://en.wikipedia.org/wiki/Rank_of_an_abelian_group|rank]] of the group by the number of generators in the list. Below we give some of the more interesting subgroup systems. If a scale is given with the system, it means the subgroup is generated by the notes of the scale.


====7-limit====
===7-limit subgroups===
 
[2, 3, 7]
[2, 3, 7]
Ets: 5, 31, 36, 135, 571
Ets: 5, 31, 36, 135, 571
Archytas [8/7, 32/27, 4/3, 3/2, 12/7, 16/9, 2/1]
Septimal [8/7, 9/7, 4/3, 32/21, 12/7, 16/9, 2/1]


[2, 5, 7]
[2, 5, 7]
Line 24: Line 28:
[2, 5/3, 7]
[2, 5/3, 7]
Ets: 12, 15, 42, 57, 270, 327
Ets: 12, 15, 42, 57, 270, 327
[2, 5, 7/3]
Ets: 9, 31, 40, 50, 81, 90, 171, 261


[2, 5/3, 7/3]
[2, 5/3, 7/3]
Ets: 27, 68, 72, 99, 171, 517
Ets: 27, 68, 72, 99, 171, 517


====11-limit====
===11-limit subgroups===


[2, 3, 11]
[2, 3, 11]
Ets: 7, 15, 17, 24, 159, 494, 518, 653
Ets: 7, 15, 17, 24, 159, 494, 518, 653
Zalzal [9/8, 27/22, 4/3, 3/2, 18/11, 16/9, 2/1]


[2, 5, 11]
[2, 5, 11]
Line 38: Line 47:
[2, 7, 11]
[2, 7, 11]
Ets: 6, 9, 11, 20, 26, 135, 161, 296
Ets: 6, 9, 11, 20, 26, 135, 161, 296
</pre></div>
 
[2, 3, 5, 11]
Ets: 7, 15, 22, 31, 65, 72, 87, 270, 342, 407, 494
 
[2, 3, 7, 11]
Ets: 9, 17, 26, 31, 41, 46, 63, 72, 135
 
Ptolemy [22/21, 8/7, 4/3, 3/2, 11/7, 12/7, 2/1]
 
[2, 5, 7, 11]
Ets: 6, 15, 31, 35, 37, 109, 618, 960
 
===13-limit subgroups
 
[2, 3, 13]
Ets: 7, 10, 17, 60, 70, 130, 147, 277, 424
 
Mustaqim [9/8, 39/32, 4/3, 3/2, 13/8, 16/9, 2/1]
 
[2, 3, 7, 13]
Ets: 10, 26, 27, 36, 77, 94, 104, 130, 234
 
Buzurg [14/13, 16/13, 4/3, 56/39, 3/2]
Safi [8/7, 16/13, 4/3, 32/21, 64/39, 16/9, 2/1]
Ibn [14/13, 7/6, 4/3, 3/2, 21/13, 7/4, 2]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Just intonation subgroups&lt;/title&gt;&lt;/head&gt;&lt;body&gt;By a just intonation subgroup is meant a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Free_abelian_group" rel="nofollow"&gt;group&lt;/a&gt; generated by a finite set of positive rational numbers via arbitrary multiplications and divisions. Any such group will be contained in a &lt;a class="wiki_link" href="/Harmonic%20Limit"&gt;p-limit&lt;/a&gt; group for some minimal choice of prime p, which is the prime limit of the subgroup. &lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Just intonation subgroups&lt;/title&gt;&lt;/head&gt;&lt;body&gt;By a just intonation subgroup is meant a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Free_abelian_group" rel="nofollow"&gt;group&lt;/a&gt; generated by a finite set of positive rational numbers via arbitrary multiplications and divisions. Any such group will be contained in a &lt;a class="wiki_link" href="/Harmonic%20Limit"&gt;p-limit&lt;/a&gt; group for some minimal choice of prime p, which is the prime limit of the subgroup. &lt;br /&gt;
Line 46: Line 79:
A canonical naming system for just intonation subgroups is to give a &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal interval list&lt;/a&gt; for the generators of the group, which will also show the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Rank_of_an_abelian_group" rel="nofollow"&gt;rank&lt;/a&gt; of the group by the number of generators in the list. Below we give some of the more interesting subgroup systems. If a scale is given with the system, it means the subgroup is generated by the notes of the scale.&lt;br /&gt;
A canonical naming system for just intonation subgroups is to give a &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal interval list&lt;/a&gt; for the generators of the group, which will also show the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Rank_of_an_abelian_group" rel="nofollow"&gt;rank&lt;/a&gt; of the group by the number of generators in the list. Below we give some of the more interesting subgroup systems. If a scale is given with the system, it means the subgroup is generated by the notes of the scale.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h4&amp;gt; --&gt;&lt;h4 id="toc0"&gt;&lt;a name="x---7-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;7-limit&lt;/h4&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc0"&gt;&lt;a name="x--7-limit subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;7-limit subgroups&lt;/h3&gt;
&lt;br /&gt;
[2, 3, 7]&lt;br /&gt;
[2, 3, 7]&lt;br /&gt;
Ets: 5, 31, 36, 135, 571&lt;br /&gt;
Ets: 5, 31, 36, 135, 571&lt;br /&gt;
&lt;br /&gt;
Archytas [8/7, 32/27, 4/3, 3/2, 12/7, 16/9, 2/1]&lt;br /&gt;
Septimal [8/7, 9/7, 4/3, 32/21, 12/7, 16/9, 2/1]&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
[2, 5, 7]&lt;br /&gt;
[2, 5, 7]&lt;br /&gt;
Line 58: Line 95:
[2, 5/3, 7]&lt;br /&gt;
[2, 5/3, 7]&lt;br /&gt;
Ets: 12, 15, 42, 57, 270, 327&lt;br /&gt;
Ets: 12, 15, 42, 57, 270, 327&lt;br /&gt;
&lt;br /&gt;
[2, 5, 7/3]&lt;br /&gt;
Ets: 9, 31, 40, 50, 81, 90, 171, 261&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
[2, 5/3, 7/3]&lt;br /&gt;
[2, 5/3, 7/3]&lt;br /&gt;
Ets: 27, 68, 72, 99, 171, 517&lt;br /&gt;
Ets: 27, 68, 72, 99, 171, 517&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h4&amp;gt; --&gt;&lt;h4 id="toc1"&gt;&lt;a name="x---11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;11-limit&lt;/h4&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x--11-limit subgroups"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;11-limit subgroups&lt;/h3&gt;
&lt;br /&gt;
&lt;br /&gt;
[2, 3, 11]&lt;br /&gt;
[2, 3, 11]&lt;br /&gt;
Ets: 7, 15, 17, 24, 159, 494, 518, 653&lt;br /&gt;
Ets: 7, 15, 17, 24, 159, 494, 518, 653&lt;br /&gt;
&lt;br /&gt;
Zalzal [9/8, 27/22, 4/3, 3/2, 18/11, 16/9, 2/1]&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
[2, 5, 11]&lt;br /&gt;
[2, 5, 11]&lt;br /&gt;
Line 71: Line 113:
&lt;br /&gt;
&lt;br /&gt;
[2, 7, 11]&lt;br /&gt;
[2, 7, 11]&lt;br /&gt;
Ets: 6, 9, 11, 20, 26, 135, 161, 296&lt;/body&gt;&lt;/html&gt;</pre></div>
Ets: 6, 9, 11, 20, 26, 135, 161, 296&lt;br /&gt;
&lt;br /&gt;
[2, 3, 5, 11]&lt;br /&gt;
Ets: 7, 15, 22, 31, 65, 72, 87, 270, 342, 407, 494&lt;br /&gt;
&lt;br /&gt;
[2, 3, 7, 11]&lt;br /&gt;
Ets: 9, 17, 26, 31, 41, 46, 63, 72, 135&lt;br /&gt;
&lt;br /&gt;
Ptolemy [22/21, 8/7, 4/3, 3/2, 11/7, 12/7, 2/1]&lt;br /&gt;
&lt;br /&gt;
[2, 5, 7, 11]&lt;br /&gt;
Ets: 6, 15, 31, 35, 37, 109, 618, 960&lt;br /&gt;
&lt;br /&gt;
===13-limit subgroups&lt;br /&gt;
&lt;br /&gt;
[2, 3, 13]&lt;br /&gt;
Ets: 7, 10, 17, 60, 70, 130, 147, 277, 424&lt;br /&gt;
&lt;br /&gt;
Mustaqim [9/8, 39/32, 4/3, 3/2, 13/8, 16/9, 2/1]&lt;br /&gt;
&lt;br /&gt;
[2, 3, 7, 13]&lt;br /&gt;
Ets: 10, 26, 27, 36, 77, 94, 104, 130, 234&lt;br /&gt;
&lt;br /&gt;
Buzurg [14/13, 16/13, 4/3, 56/39, 3/2]&lt;br /&gt;
Safi [8/7, 16/13, 4/3, 32/21, 64/39, 16/9, 2/1]&lt;br /&gt;
Ibn [14/13, 7/6, 4/3, 3/2, 21/13, 7/4, 2]&lt;/body&gt;&lt;/html&gt;</pre></div>