Just intonation subgroup: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 143693319 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 143694515 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-05-21 05:13:38 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-05-21 05:26:22 UTC</tt>.<br>
: The original revision id was <tt>143693319</tt>.<br>
: The original revision id was <tt>143694515</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 17: Line 17:
Ets: 5, 31, 36, 135, 571
Ets: 5, 31, 36, 135, 571


Archytas [8/7, 32/27, 4/3, 3/2, 12/7, 16/9, 2/1]
Archytas Diatonic  [8/7, 32/27, 4/3, 3/2, 12/7, 16/9, 2/1]
Septimal [8/7, 9/7, 4/3, 32/21, 12/7, 16/9, 2/1]
Safi al-Din Septimal [8/7, 9/7, 4/3, 32/21, 12/7, 16/9, 2/1]


[2, 5, 7]
[2, 5, 7]
Line 40: Line 40:
Ets: 7, 15, 17, 24, 159, 494, 518, 653
Ets: 7, 15, 17, 24, 159, 494, 518, 653


Zalzal [9/8, 27/22, 4/3, 3/2, 18/11, 16/9, 2/1]
Zalzal, al-Farabi's version [9/8, 27/22, 4/3, 3/2, 18/11, 16/9, 2/1]


[2, 5, 11]
[2, 5, 11]
Line 54: Line 54:
Ets: 9, 17, 26, 31, 41, 46, 63, 72, 135
Ets: 9, 17, 26, 31, 41, 46, 63, 72, 135


Ptolemy [22/21, 8/7, 4/3, 3/2, 11/7, 12/7, 2/1]
Ptolemy Intense Chromatic [22/21, 8/7, 4/3, 3/2, 11/7, 12/7, 2/1]


[2, 5, 7, 11]
[2, 5, 7, 11]
Line 64: Line 64:
Ets: 7, 10, 17, 60, 70, 130, 147, 277, 424
Ets: 7, 10, 17, 60, 70, 130, 147, 277, 424


Mustaqim [9/8, 39/32, 4/3, 3/2, 13/8, 16/9, 2/1]
Mustaqim mode, Ibn Sina [9/8, 39/32, 4/3, 3/2, 13/8, 16/9, 2/1]


[2, 3, 7, 13]
[2, 3, 7, 13]
Line 70: Line 70:


Buzurg [14/13, 16/13, 4/3, 56/39, 3/2]
Buzurg [14/13, 16/13, 4/3, 56/39, 3/2]
Safi [8/7, 16/13, 4/3, 32/21, 64/39, 16/9, 2/1]
Septimal tuning, Safi al-Din [8/7, 16/13, 4/3, 32/21, 64/39, 16/9, 2/1]
Ibn [14/13, 7/6, 4/3, 3/2, 21/13, 7/4, 2]</pre></div>
Septimal tuning, Ibn Sina [14/13, 7/6, 4/3, 3/2, 21/13, 7/4, 2]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Just intonation subgroups&lt;/title&gt;&lt;/head&gt;&lt;body&gt;By a just intonation subgroup is meant a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Free_abelian_group" rel="nofollow"&gt;group&lt;/a&gt; generated by a finite set of positive rational numbers via arbitrary multiplications and divisions. Any such group will be contained in a &lt;a class="wiki_link" href="/Harmonic%20Limit"&gt;p-limit&lt;/a&gt; group for some minimal choice of prime p, which is the prime limit of the subgroup. &lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Just intonation subgroups&lt;/title&gt;&lt;/head&gt;&lt;body&gt;By a just intonation subgroup is meant a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Free_abelian_group" rel="nofollow"&gt;group&lt;/a&gt; generated by a finite set of positive rational numbers via arbitrary multiplications and divisions. Any such group will be contained in a &lt;a class="wiki_link" href="/Harmonic%20Limit"&gt;p-limit&lt;/a&gt; group for some minimal choice of prime p, which is the prime limit of the subgroup. &lt;br /&gt;
Line 84: Line 84:
Ets: 5, 31, 36, 135, 571&lt;br /&gt;
Ets: 5, 31, 36, 135, 571&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Archytas [8/7, 32/27, 4/3, 3/2, 12/7, 16/9, 2/1]&lt;br /&gt;
Archytas Diatonic  [8/7, 32/27, 4/3, 3/2, 12/7, 16/9, 2/1]&lt;br /&gt;
Septimal [8/7, 9/7, 4/3, 32/21, 12/7, 16/9, 2/1]&lt;br /&gt;
Safi al-Din Septimal [8/7, 9/7, 4/3, 32/21, 12/7, 16/9, 2/1]&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
[2, 5, 7]&lt;br /&gt;
[2, 5, 7]&lt;br /&gt;
Line 107: Line 107:
Ets: 7, 15, 17, 24, 159, 494, 518, 653&lt;br /&gt;
Ets: 7, 15, 17, 24, 159, 494, 518, 653&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Zalzal [9/8, 27/22, 4/3, 3/2, 18/11, 16/9, 2/1]&lt;br /&gt;
Zalzal, al-Farabi's version [9/8, 27/22, 4/3, 3/2, 18/11, 16/9, 2/1]&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
[2, 5, 11]&lt;br /&gt;
[2, 5, 11]&lt;br /&gt;
Line 121: Line 121:
Ets: 9, 17, 26, 31, 41, 46, 63, 72, 135&lt;br /&gt;
Ets: 9, 17, 26, 31, 41, 46, 63, 72, 135&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Ptolemy [22/21, 8/7, 4/3, 3/2, 11/7, 12/7, 2/1]&lt;br /&gt;
Ptolemy Intense Chromatic [22/21, 8/7, 4/3, 3/2, 11/7, 12/7, 2/1]&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
[2, 5, 7, 11]&lt;br /&gt;
[2, 5, 7, 11]&lt;br /&gt;
Line 131: Line 131:
Ets: 7, 10, 17, 60, 70, 130, 147, 277, 424&lt;br /&gt;
Ets: 7, 10, 17, 60, 70, 130, 147, 277, 424&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Mustaqim [9/8, 39/32, 4/3, 3/2, 13/8, 16/9, 2/1]&lt;br /&gt;
Mustaqim mode, Ibn Sina [9/8, 39/32, 4/3, 3/2, 13/8, 16/9, 2/1]&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
[2, 3, 7, 13]&lt;br /&gt;
[2, 3, 7, 13]&lt;br /&gt;
Line 137: Line 137:
&lt;br /&gt;
&lt;br /&gt;
Buzurg [14/13, 16/13, 4/3, 56/39, 3/2]&lt;br /&gt;
Buzurg [14/13, 16/13, 4/3, 56/39, 3/2]&lt;br /&gt;
Safi [8/7, 16/13, 4/3, 32/21, 64/39, 16/9, 2/1]&lt;br /&gt;
Septimal tuning, Safi al-Din [8/7, 16/13, 4/3, 32/21, 64/39, 16/9, 2/1]&lt;br /&gt;
Ibn [14/13, 7/6, 4/3, 3/2, 21/13, 7/4, 2]&lt;/body&gt;&lt;/html&gt;</pre></div>
Septimal tuning, Ibn Sina [14/13, 7/6, 4/3, 3/2, 21/13, 7/4, 2]&lt;/body&gt;&lt;/html&gt;</pre></div>