Just intonation subgroup: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 143982061 - Original comment: **
Wikispaces>xenwolf
**Imported revision 215740780 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-05-23 02:56:34 UTC</tt>.<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-03-31 03:45:58 UTC</tt>.<br>
: The original revision id was <tt>143982061</tt>.<br>
: The original revision id was <tt>215740780</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">By a just intonation subgroup is meant a [[http://en.wikipedia.org/wiki/Free_abelian_group|group]] generated by a finite set of positive rational numbers via arbitrary multiplications and divisions. Any such group will be contained in a [[Harmonic Limit|p-limit]] group for some minimal choice of prime p, which is the prime limit of the subgroup.  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">By a just intonation subgroup is meant a [[http://en.wikipedia.org/wiki/Free_abelian_group|group]] generated by a finite set of positive rational numbers via arbitrary multiplications and divisions. Any such group will be contained in a [[Harmonic Limit|p-limit]] group for some minimal choice of prime p, which is the prime limit of the subgroup.  


It is only when the group in question is not the entire p-limit group that we have a just intonation subgroup in the strict sense. Such subgroups come in two flavors: finite [[http://en.wikipedia.org/wiki/Index_of_a_subgroup|index]] and infinite index, where intuitively speaking the index measures the relative size of the subgroup within the entire p-limit group. For example, the subgroups generated by 4 and 3, by 2 and 9, and by 4 and 6 all have index 2 in the full 3-limit (Pythagorean) group. Half of the 3-limit intervals will belong to any one of them, and half will not, and all three groups are distinct. On the other hand, the group generated by 2, 3, and 7 is of infinite index in the full 7-limit group, which is generated by 2, 3, 5 and 7.
It is only when the group in question is not the entire p-limit group that we have a just intonation subgroup in the strict sense. Such subgroups come in two flavors: finite [[http://en.wikipedia.org/wiki/Index_of_a_subgroup|index]] and infinite index, where intuitively speaking the index measures the relative size of the subgroup within the entire p-limit group. For example, the subgroups generated by 4 and 3, by 2 and 9, and by 4 and 6 all have index 2 in the full [[3-limit]] (Pythagorean) group. Half of the 3-limit intervals will belong to any one of them, and half will not, and all three groups are distinct. On the other hand, the group generated by 2, 3, and 7 is of infinite index in the full 7-limit group, which is generated by 2, 3, 5 and 7.


A canonical naming system for just intonation subgroups is to give a [[Normal lists|normal interval list]] for the generators of the group, which will also show the [[http://en.wikipedia.org/wiki/Rank_of_an_abelian_group|rank]] of the group by the number of generators in the list. Below we give some of the more interesting subgroup systems. If a scale is given with the system, it means the subgroup is generated by the notes of the scale.
A canonical naming system for just intonation subgroups is to give a [[Normal lists|normal interval list]] for the generators of the group, which will also show the [[http://en.wikipedia.org/wiki/Rank_of_an_abelian_group|rank]] of the group by the number of generators in the list. Below we give some of the more interesting subgroup systems. If a scale is given with the system, it means the subgroup is generated by the notes of the scale.
Line 80: Line 80:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Just intonation subgroups&lt;/title&gt;&lt;/head&gt;&lt;body&gt;By a just intonation subgroup is meant a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Free_abelian_group" rel="nofollow"&gt;group&lt;/a&gt; generated by a finite set of positive rational numbers via arbitrary multiplications and divisions. Any such group will be contained in a &lt;a class="wiki_link" href="/Harmonic%20Limit"&gt;p-limit&lt;/a&gt; group for some minimal choice of prime p, which is the prime limit of the subgroup. &lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Just intonation subgroups&lt;/title&gt;&lt;/head&gt;&lt;body&gt;By a just intonation subgroup is meant a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Free_abelian_group" rel="nofollow"&gt;group&lt;/a&gt; generated by a finite set of positive rational numbers via arbitrary multiplications and divisions. Any such group will be contained in a &lt;a class="wiki_link" href="/Harmonic%20Limit"&gt;p-limit&lt;/a&gt; group for some minimal choice of prime p, which is the prime limit of the subgroup. &lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
It is only when the group in question is not the entire p-limit group that we have a just intonation subgroup in the strict sense. Such subgroups come in two flavors: finite &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Index_of_a_subgroup" rel="nofollow"&gt;index&lt;/a&gt; and infinite index, where intuitively speaking the index measures the relative size of the subgroup within the entire p-limit group. For example, the subgroups generated by 4 and 3, by 2 and 9, and by 4 and 6 all have index 2 in the full 3-limit (Pythagorean) group. Half of the 3-limit intervals will belong to any one of them, and half will not, and all three groups are distinct. On the other hand, the group generated by 2, 3, and 7 is of infinite index in the full 7-limit group, which is generated by 2, 3, 5 and 7.&lt;br /&gt;
It is only when the group in question is not the entire p-limit group that we have a just intonation subgroup in the strict sense. Such subgroups come in two flavors: finite &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Index_of_a_subgroup" rel="nofollow"&gt;index&lt;/a&gt; and infinite index, where intuitively speaking the index measures the relative size of the subgroup within the entire p-limit group. For example, the subgroups generated by 4 and 3, by 2 and 9, and by 4 and 6 all have index 2 in the full &lt;a class="wiki_link" href="/3-limit"&gt;3-limit&lt;/a&gt; (Pythagorean) group. Half of the 3-limit intervals will belong to any one of them, and half will not, and all three groups are distinct. On the other hand, the group generated by 2, 3, and 7 is of infinite index in the full 7-limit group, which is generated by 2, 3, 5 and 7.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
A canonical naming system for just intonation subgroups is to give a &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal interval list&lt;/a&gt; for the generators of the group, which will also show the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Rank_of_an_abelian_group" rel="nofollow"&gt;rank&lt;/a&gt; of the group by the number of generators in the list. Below we give some of the more interesting subgroup systems. If a scale is given with the system, it means the subgroup is generated by the notes of the scale.&lt;br /&gt;
A canonical naming system for just intonation subgroups is to give a &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal interval list&lt;/a&gt; for the generators of the group, which will also show the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Rank_of_an_abelian_group" rel="nofollow"&gt;rank&lt;/a&gt; of the group by the number of generators in the list. Below we give some of the more interesting subgroup systems. If a scale is given with the system, it means the subgroup is generated by the notes of the scale.&lt;br /&gt;