Interior product: Difference between revisions
Wikispaces>mbattaglia1 **Imported revision 278250542 - Original comment: ** |
Wikispaces>clumma **Imported revision 278264816 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:clumma|clumma]] and made on <tt>2011-11-22 16:05:10 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>278264816</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //interior product// is a notion dual to the wedge product, so we will denote it using ∨ rather than ∧. To define it, we first discuss the multilinear map, or [[Wedgies and Multivals|n-map]], a multival of rank n induces on a list of n monzos. Let W be a multival of rank n, and m1, m2, ..., mn n monzos. Take the wedgie product of these monzos in exactly the same way as the wedge product of n vals, producing the multimonzo M. Treating both M and | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //interior product// is a notion dual to the wedge product, so we will denote it using ∨ rather than ∧. To define it, we first discuss the multilinear map, or [[Wedgies and Multivals|n-map]], a multival of rank n induces on a list of n monzos. Let W be a multival of rank n, and m1, m2, ..., mn n monzos. Take the wedgie product of these monzos in exactly the same way as the wedge product of n vals, producing the multimonzo M. Treating both M and W as ordinary vectors, take the dot product. This is the value of W(m1, m2, ..., mn). | ||
For example, suppose W = <<6 -7 -2 -25 -20 15||, the wedgie for 7-limit miracle. If our two monzos are the monzos for 2 and 15/14, namely |1 0 0 0> and |-1 1 1 1>, then wedging them together gives the bimonzo ||1 1 -1 0 0 0>>. The dot product with W is <<6 -7 -2 -25 -20 15||1 1 -1 0 0 0>>, which is 6 - 7 - (-2) = 1, so W(2, 15/14) = W(|1 0 0 0>, |-1 1 1 1>) = 1. The fact that the result is +-1 tells us that 2 and 15/14 can serve as a pair of generators for miracle; if the absolute value of the n-map is N, then the monzos it was applied to, when tempered, generate a subgroup of index N of the whole group of intervals of the temperament. | For example, suppose W = <<6 -7 -2 -25 -20 15||, the wedgie for 7-limit miracle. If our two monzos are the monzos for 2 and 15/14, namely |1 0 0 0> and |-1 1 1 1>, then wedging them together gives the bimonzo ||1 1 -1 0 0 0>>. The dot product with W is <<6 -7 -2 -25 -20 15||1 1 -1 0 0 0>>, which is 6 - 7 - (-2) = 1, so W(2, 15/14) = W(|1 0 0 0>, |-1 1 1 1>) = 1. The fact that the result is +-1 tells us that 2 and 15/14 can serve as a pair of generators for miracle; if the absolute value of the n-map is N, then the monzos it was applied to, when tempered, generate a subgroup of index N of the whole group of intervals of the temperament. | ||
Line 14: | Line 14: | ||
If we like, we can take the wedge product m∨W from the front by using W(q, s1, s2, s3 ... s_(n-1)) instead of W(s1, s2, s3 ... s_(n-1), q), but this can only lead to a difference in sign.</pre></div> | If we like, we can take the wedge product m∨W from the front by using W(q, s1, s2, s3 ... s_(n-1)) instead of W(s1, s2, s3 ... s_(n-1), q), but this can only lead to a difference in sign.</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Interior product</title></head><body>The <em>interior product</em> is a notion dual to the wedge product, so we will denote it using ∨ rather than ∧. To define it, we first discuss the multilinear map, or <a class="wiki_link" href="/Wedgies%20and%20Multivals">n-map</a>, a multival of rank n induces on a list of n monzos. Let W be a multival of rank n, and m1, m2, ..., mn n monzos. Take the wedgie product of these monzos in exactly the same way as the wedge product of n vals, producing the multimonzo M. Treating both M and | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Interior product</title></head><body>The <em>interior product</em> is a notion dual to the wedge product, so we will denote it using ∨ rather than ∧. To define it, we first discuss the multilinear map, or <a class="wiki_link" href="/Wedgies%20and%20Multivals">n-map</a>, a multival of rank n induces on a list of n monzos. Let W be a multival of rank n, and m1, m2, ..., mn n monzos. Take the wedgie product of these monzos in exactly the same way as the wedge product of n vals, producing the multimonzo M. Treating both M and W as ordinary vectors, take the dot product. This is the value of W(m1, m2, ..., mn).<br /> | ||
<br /> | <br /> | ||
For example, suppose W = &lt;&lt;6 -7 -2 -25 -20 15||, the wedgie for 7-limit miracle. If our two monzos are the monzos for 2 and 15/14, namely |1 0 0 0&gt; and |-1 1 1 1&gt;, then wedging them together gives the bimonzo ||1 1 -1 0 0 0&gt;&gt;. The dot product with W is &lt;&lt;6 -7 -2 -25 -20 15||1 1 -1 0 0 0&gt;&gt;, which is 6 - 7 - (-2) = 1, so W(2, 15/14) = W(|1 0 0 0&gt;, |-1 1 1 1&gt;) = 1. The fact that the result is +-1 tells us that 2 and 15/14 can serve as a pair of generators for miracle; if the absolute value of the n-map is N, then the monzos it was applied to, when tempered, generate a subgroup of index N of the whole group of intervals of the temperament.<br /> | For example, suppose W = &lt;&lt;6 -7 -2 -25 -20 15||, the wedgie for 7-limit miracle. If our two monzos are the monzos for 2 and 15/14, namely |1 0 0 0&gt; and |-1 1 1 1&gt;, then wedging them together gives the bimonzo ||1 1 -1 0 0 0&gt;&gt;. The dot product with W is &lt;&lt;6 -7 -2 -25 -20 15||1 1 -1 0 0 0&gt;&gt;, which is 6 - 7 - (-2) = 1, so W(2, 15/14) = W(|1 0 0 0&gt;, |-1 1 1 1&gt;) = 1. The fact that the result is +-1 tells us that 2 and 15/14 can serve as a pair of generators for miracle; if the absolute value of the n-map is N, then the monzos it was applied to, when tempered, generate a subgroup of index N of the whole group of intervals of the temperament.<br /> |