Interior product: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 279110366 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 302943756 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-11-25 21:51:00 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-02-18 02:11:42 UTC</tt>.<br>
: The original revision id was <tt>279110366</tt>.<br>
: The original revision id was <tt>302943756</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //interior product// is a notion dual to the wedge product, so we will denote it using ∨ rather than ∧. To define it, we first discuss the multilinear map, or [[Wedgies and Multivals|n-map]], a multival of rank n induces on a list of n monzos. Let W be a multival of rank n, and m1, m2, ..., mn n monzos. Take the wedge product of these monzos in exactly the same way as the wedge product of n vals, producing the multimonzo M. Treating both M and W as ordinary vectors, take the dot product. This is the value of W(m1, m2, ..., mn).
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
 
=Definition=
The //interior product// is a notion dual to the wedge product, so we will denote it using ∨ rather than ∧. To define it, we first discuss the multilinear map, or [[Wedgies and Multivals|n-map]], a multival of rank n induces on a list of n monzos. Let W be a multival of rank n, and m1, m2, ..., mn n monzos. Take the wedge product of these monzos in exactly the same way as the wedge product of n vals, producing the multimonzo M. Treating both M and W as ordinary vectors, take the dot product. This is the value of W(m1, m2, ..., mn).


For example, suppose W = &lt;&lt;6 -7 -2 -25 -20 15||, the wedgie for 7-limit miracle. If our two monzos are the monzos for 2 and 15/14, namely |1 0 0 0&gt; and |-1 1 1 1&gt;, then wedging them together gives the bimonzo ||1 1 -1 0 0 0&gt;&gt;. The dot product with W is &lt;&lt;6 -7 -2 -25 -20 15||1 1 -1 0 0 0&gt;&gt;, which is 6 - 7 - (-2) = 1, so W(2, 15/14) = W(|1 0 0 0&gt;, |-1 1 1 1&gt;) = 1. The fact that the result is ∓1 tells us that 2 and 15/14 can serve as a pair of generators for miracle; if the absolute value of the n-map is N, then the monzos it was applied to, when tempered, generate a subgroup of index N of the whole group of intervals of the temperament.
For example, suppose W = &lt;&lt;6 -7 -2 -25 -20 15||, the wedgie for 7-limit miracle. If our two monzos are the monzos for 2 and 15/14, namely |1 0 0 0&gt; and |-1 1 1 1&gt;, then wedging them together gives the bimonzo ||1 1 -1 0 0 0&gt;&gt;. The dot product with W is &lt;&lt;6 -7 -2 -25 -20 15||1 1 -1 0 0 0&gt;&gt;, which is 6 - 7 - (-2) = 1, so W(2, 15/14) = W(|1 0 0 0&gt;, |-1 1 1 1&gt;) = 1. The fact that the result is ∓1 tells us that 2 and 15/14 can serve as a pair of generators for miracle; if the absolute value of the n-map is N, then the monzos it was applied to, when tempered, generate a subgroup of index N of the whole group of intervals of the temperament.
Line 23: Line 26:
The interior product is also useful in finding the temperament map given the wedgie. Given a rank r p-limit wedgie, we can find a collection of vals belonging to it by taking the interior product with every set of r-1 primes less than or equal to p, and reducing this to the map. For instance, for Marv we take [Marv∨2∨3, Marv∨2∨5, ..., Marv∨7∨11], which gives [&lt;0 0 -1 -2 3|, &lt;0 1 0 2 -1|, &lt;0 2 -2 0 4|, &lt;0 -3 1 -4 0|, &lt;-1 0 0 5 -12|, &lt;-2 0 -5 0 -9|, &lt;3 0 12 9 0|, &lt;2 5 0 0 19|, &lt;-1 -12 0 -19 0|, &lt;4 -9 19 0 0|]. Hermite reducing this to a normal val list results in [&lt;1 0 0 -5 12|, &lt;0 1 0 2 -1|, &lt;0 0 1 2 -3|], the normal val list for 11-limit marvel.</pre></div>
The interior product is also useful in finding the temperament map given the wedgie. Given a rank r p-limit wedgie, we can find a collection of vals belonging to it by taking the interior product with every set of r-1 primes less than or equal to p, and reducing this to the map. For instance, for Marv we take [Marv∨2∨3, Marv∨2∨5, ..., Marv∨7∨11], which gives [&lt;0 0 -1 -2 3|, &lt;0 1 0 2 -1|, &lt;0 2 -2 0 4|, &lt;0 -3 1 -4 0|, &lt;-1 0 0 5 -12|, &lt;-2 0 -5 0 -9|, &lt;3 0 12 9 0|, &lt;2 5 0 0 19|, &lt;-1 -12 0 -19 0|, &lt;4 -9 19 0 0|]. Hermite reducing this to a normal val list results in [&lt;1 0 0 -5 12|, &lt;0 1 0 2 -1|, &lt;0 0 1 2 -3|], the normal val list for 11-limit marvel.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Interior product&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;interior product&lt;/em&gt; is a notion dual to the wedge product, so we will denote it using ∨ rather than ∧. To define it, we first discuss the multilinear map, or &lt;a class="wiki_link" href="/Wedgies%20and%20Multivals"&gt;n-map&lt;/a&gt;, a multival of rank n induces on a list of n monzos. Let W be a multival of rank n, and m1, m2, ..., mn n monzos. Take the wedge product of these monzos in exactly the same way as the wedge product of n vals, producing the multimonzo M. Treating both M and W as ordinary vectors, take the dot product. This is the value of W(m1, m2, ..., mn).&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Interior product&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:4:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:4 --&gt;&lt;!-- ws:start:WikiTextTocRule:5: --&gt;&lt;a href="#Definition"&gt;Definition&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:5 --&gt;&lt;!-- ws:start:WikiTextTocRule:6: --&gt; | &lt;a href="#Applications"&gt;Applications&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:6 --&gt;&lt;!-- ws:start:WikiTextTocRule:7: --&gt;
&lt;!-- ws:end:WikiTextTocRule:7 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Definition&lt;/h1&gt;
The &lt;em&gt;interior product&lt;/em&gt; is a notion dual to the wedge product, so we will denote it using ∨ rather than ∧. To define it, we first discuss the multilinear map, or &lt;a class="wiki_link" href="/Wedgies%20and%20Multivals"&gt;n-map&lt;/a&gt;, a multival of rank n induces on a list of n monzos. Let W be a multival of rank n, and m1, m2, ..., mn n monzos. Take the wedge product of these monzos in exactly the same way as the wedge product of n vals, producing the multimonzo M. Treating both M and W as ordinary vectors, take the dot product. This is the value of W(m1, m2, ..., mn).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For example, suppose W = &amp;lt;&amp;lt;6 -7 -2 -25 -20 15||, the wedgie for 7-limit miracle. If our two monzos are the monzos for 2 and 15/14, namely |1 0 0 0&amp;gt; and |-1 1 1 1&amp;gt;, then wedging them together gives the bimonzo ||1 1 -1 0 0 0&amp;gt;&amp;gt;. The dot product with W is &amp;lt;&amp;lt;6 -7 -2 -25 -20 15||1 1 -1 0 0 0&amp;gt;&amp;gt;, which is 6 - 7 - (-2) = 1, so W(2, 15/14) = W(|1 0 0 0&amp;gt;, |-1 1 1 1&amp;gt;) = 1. The fact that the result is ∓1 tells us that 2 and 15/14 can serve as a pair of generators for miracle; if the absolute value of the n-map is N, then the monzos it was applied to, when tempered, generate a subgroup of index N of the whole group of intervals of the temperament.&lt;br /&gt;
For example, suppose W = &amp;lt;&amp;lt;6 -7 -2 -25 -20 15||, the wedgie for 7-limit miracle. If our two monzos are the monzos for 2 and 15/14, namely |1 0 0 0&amp;gt; and |-1 1 1 1&amp;gt;, then wedging them together gives the bimonzo ||1 1 -1 0 0 0&amp;gt;&amp;gt;. The dot product with W is &amp;lt;&amp;lt;6 -7 -2 -25 -20 15||1 1 -1 0 0 0&amp;gt;&amp;gt;, which is 6 - 7 - (-2) = 1, so W(2, 15/14) = W(|1 0 0 0&amp;gt;, |-1 1 1 1&amp;gt;) = 1. The fact that the result is ∓1 tells us that 2 and 15/14 can serve as a pair of generators for miracle; if the absolute value of the n-map is N, then the monzos it was applied to, when tempered, generate a subgroup of index N of the whole group of intervals of the temperament.&lt;br /&gt;
Line 31: Line 37:
If we like, we can take the wedge product m∨W from the front by using W(q, s1, s2, s3 ... s_(n-1)) instead of W(s1, s2, s3 ... s_(n-1), q), but this can only lead to a difference in sign.&lt;br /&gt;
If we like, we can take the wedge product m∨W from the front by using W(q, s1, s2, s3 ... s_(n-1)) instead of W(s1, s2, s3 ... s_(n-1), q), but this can only lead to a difference in sign.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Applications"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Applications&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Applications"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Applications&lt;/h1&gt;
  One very useful application is testing whether a wedgie defines a temperament which tempers out a particular comma. Any interval other than 1 is tempered out by the temperament defined by a rank r wedgie if and only if the rank r-1 multival obtained by taking the interior product of the wedgie with the interval is the zero multival--that is, if all the coefficients are zero.&lt;br /&gt;
  One very useful application is testing whether a wedgie defines a temperament which tempers out a particular comma. Any interval other than 1 is tempered out by the temperament defined by a rank r wedgie if and only if the rank r-1 multival obtained by taking the interior product of the wedgie with the interval is the zero multival--that is, if all the coefficients are zero.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;