User:BudjarnLambeth/12edo as a 2.3.5.17.19 tuning: Difference between revisions
mNo edit summary |
|||
Line 16: | Line 16: | ||
; Sometimes composite | ; Sometimes composite | ||
* dual = [[Dual-n|Dual-n subgroup]] | * dual = [[Dual-n|Dual-n subgroup]] | ||
* | * cen = Directional subgroup | ||
** ''Example: - | ** ''Example: -20cen+1 includes all primes where -20¢<absolute error<+1¢'' | ||
** ''Example: - | ** ''Example: -1cen+35 includes all primes where -1¢<absolute error<+35¢'' | ||
** ''Example: -15cen+10 includes all primes where -15¢<relative error<+10¢'' | |||
Line 56: | Line 57: | ||
# Do whichever of the following things results in the most simple consonances being available and the least out of tune consonances being listed (use your own discretion to decide): | # Do whichever of the following things results in the most simple consonances being available and the least out of tune consonances being listed (use your own discretion to decide): | ||
## Add the next 4-5 prime harmonics to be approximated within 15 cents | ## Add the next 4-5 prime harmonics to be approximated within 15 cents | ||
## Add the next 4-5 prime harmonics with | ## Add the next 4-5 prime harmonics with absolute error between -a¢ and +b¢ where (a+b) is no bigger than 50. Make a and b anything you like that fits the rule, try to make them as small as possible while still including most important intervals | ||
## Add the 4-5 smallest odd harmonics and/or [[taxicab distance|taxicab-2]] intervals to be approximated within 15 cents | ## Add the 4-5 smallest odd harmonics and/or [[taxicab distance|taxicab-2]] intervals to be approximated within 15 cents | ||
Line 92: | Line 93: | ||
For the purposes of this list, if prime N is mapped to A steps in an EDO, then “<N“ means N but mapped to A-1 steps, and “N>” means N but mapped to A+1 steps. | For the purposes of this list, if prime N is mapped to A steps in an EDO, then “<N“ means N but mapped to A-1 steps, and “N>” means N but mapped to A+1 steps. | ||
=== Picnic EDOs (1-4) === | === Picnic EDOs (1-4) === | ||
Line 107: | Line 106: | ||
* [[6edo]]: 2 • 9 • 5 (''comp'') | * [[6edo]]: 2 • 9 • 5 (''comp'') | ||
; 5 basis elements | ; 5 basis elements | ||
* [[7edo]]: 2 • 3 • 5 • 11 • 29 (''- | * [[7edo]]: 2 • 3 • 5 • 11 • 29 (''-44cen+0'') | ||
* [[8edo]]: 2 • <small><sup>5</sup>/<sub>3</sub></small> • <small><sup>11</sup>/<sub>3</sub></small> • <small><sup>13</sup>/<sub>5</sub></small> • 19 (''nth-b; 15th'') | * [[8edo]]: 2 • <small><sup>5</sup>/<sub>3</sub></small> • <small><sup>11</sup>/<sub>3</sub></small> • <small><sup>13</sup>/<sub>5</sub></small> • 19 (''nth-b; 15th'') | ||
* [[9edo]]: 2 • 5 • <small><sup>7</sup>/<sub>3</sub></small> • 11 • <small><sup>13</sup>/<sub>7</sub></small> (''nth-b; 21st'') | * [[9edo]]: 2 • 5 • <small><sup>7</sup>/<sub>3</sub></small> • 11 • <small><sup>13</sup>/<sub>7</sub></small> (''nth-b; 21st'') | ||
Line 115: | Line 114: | ||
; 6 basis elements | ; 6 basis elements | ||
* [[13edo]]: 2 • 9 • 5 • 21 • 11 • 13 (''comp'') | * [[13edo]]: 2 • 9 • 5 • 21 • 11 • 13 (''comp'') | ||
* [[14edo]]: 2 • 3 • <5 • 7 • 11 • 17 (''- | * [[14edo]]: 2 • 3 • <5 • 7 • 11 • 17 (''-44cen+0'') | ||
* [[15edo]]: 2 • 3 • 5 • 7 • 11 • 23 (''no-n'') | * [[15edo]]: 2 • 3 • 5 • 7 • 11 • 23 (''no-n'') | ||
* [[16edo]]: 2 • 3 • 5 • 7 • 11 • 13 (''- | * [[16edo]]: 2 • 3 • 5 • 7 • 11 • 13 (''-28cen+7'') | ||
* [[17edo]]: 2 • 3 • 5> • 7 • 11 • 13 (''- | * [[17edo]]: 2 • 3 • 5> • 7 • 11 • 13 (''-0cen+38'') | ||
* [[18edo]]: 2 • 3 • 5 • 7 • 13 • 17 (''- | * [[18edo]]: 2 • 3 • 5 • 7 • 13 • 17 (''-0cen+32'') | ||
* [[19edo]]: 2 • 3 • 5 • 7 • 11 • 13 (''lim'') | * [[19edo]]: 2 • 3 • 5 • 7 • 11 • 13 (''lim'') | ||
=== Carousel EDOs (20-34) === | === Carousel EDOs (20-34) === | ||
; 6 basis elements | ; 6 basis elements | ||
* [[20edo]]: 2 • 3 • 5> • 7 • 11 • 13 (''- | * [[20edo]]: 2 • 3 • 5> • 7 • 11 • 13 (''-12cen+34'') | ||
* [[21edo]]: 2 • 3 • 5 • 7 • 17 • 19 (''no-n'') | * [[21edo]]: 2 • 3 • 5 • 7 • 17 • 19 (''no-n'') | ||
* [[22edo]]: 2 • 3 • 5 • 7 • 11 • 17 (''no-n'') | * [[22edo]]: 2 • 3 • 5 • 7 • 11 • 17 (''no-n'') |