User:BudjarnLambeth/12edo as a 2.3.5.17.19 tuning: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
m Remove duplicate section, too much of a headache to maintain
Line 15: Line 15:
* nth-b [[Half-prime subgroup|Nth-basis subgroup]]
* nth-b [[Half-prime subgroup|Nth-basis subgroup]]
* frac = [[Subgroup|Other fractional subgroup]]
* frac = [[Subgroup|Other fractional subgroup]]
Technically any fractional subgroup can be said to be nth-basis, so an arbitrary cutoff must be drawn somewhere. This page considers 200th-basis or higher to not be nth-basis, while 199th or lower is accepted.


== How to choose a type ==
== How to choose a type ==
Line 68: Line 70:
# If there are still spots left open, then they should be filled by every prime 13 and up which the EDO approximates with less than 35% relative error, preferencing the lowest primes first, until all spots are filled
# If there are still spots left open, then they should be filled by every prime 13 and up which the EDO approximates with less than 35% relative error, preferencing the lowest primes first, until all spots are filled


== Subgroups by EDO size ==
== List of subgroups by EDO ==
Size categories taken from my [[human EDO size categorization]] (HUECAT).
Size categories taken from my [[human EDO size categorization]] (HUECAT).


=== Picnic EDOs (1-4) ===
=== Picnic EDOs (1-4) ===
; 3 basis elements
* [[1edo]]: 2.125.127 (comp)
* [[1edo]]: 2.125.127 (comp)
* [[2edo]]: 2.7/5.17/3 (nth-b) (15th)
* [[2edo]]: 2.7/5.17/3 (nth-b) (15th)
Line 78: Line 81:


=== Birthday EDOs (5-19) ===
=== Birthday EDOs (5-19) ===
; 3 basis elements
* [[5edo]]: 2.3.7 (no-n)
* [[5edo]]: 2.3.7 (no-n)
* [[6edo]]: 2.9.5 (comp)
* [[6edo]]: 2.9.5 (comp)
; 5 basis elements
* [[7edo]]: 2.3.11/3.11/5.13 (nth-b) (15th)
* [[7edo]]: 2.3.11/3.11/5.13 (nth-b) (15th)
* [[8edo]]: 2.5/3.11/3.13/5.19 (nth-b) (15th)
* [[8edo]]: 2.5/3.11/3.13/5.19 (nth-b) (15th)
* [[9edo]]: 2.5.7/3.11.13/7 (nth-b) (3rd)
* [[9edo]]: 2.5.7/3.11.13/7 (nth-b) (21st)
* [[10edo]]: 2.3.7.13.17 (no-n)
* [[10edo]]: 2.3.7.13.17 (no-n)
* [[11edo]]: 2.9.15.7.11 (comp)
* [[11edo]]: 2.9.15.7.11 (comp)
* [[12edo]]: 2.3.5.17.19 (no-n)
* [[12edo]]: 2.3.5.17.19 (no-n)
; 6 basis elements
* [[13edo]]: 2.9.5.11.13.17 (comp)
* [[13edo]]: 2.9.5.11.13.17 (comp)
* [[14edo]]: 2.3.7/5.9/5.11/5.13 (nth-b) (5th)
* [[14edo]]: 2.3.7/5.9/5.11/5.13 (nth-b) (5th)
* [[15edo]]: 2.3.5.7.11 (lim)
* [[15edo]]: 2.3.5.7.11.23 (no-n)
* [[16edo]]: 2.5.7.13.19 (no-n)
* [[16edo]]: 2.5.7.13.19 (no-n)
* [[17edo]]: 2.3.7.11.13 (no-n)
* [[17edo]]: 2.3.7.11.13.19 (no-n)
* [[18edo]]: 2.9.5.7/3.11 (nth-b) (3rd)
* [[18edo]]: 2.9.5.7/3.11.13/7 (nth-b) (21st)
* [[19edo]]: 2.3.5.7.11.13 (lim)
* [[19edo]]: 2.3.5.7.11.13 (lim)


=== Carousel EDOs (20-34) ===
=== Carousel EDOs (20-34) ===
; 6 basis elements
* [[20edo]]: 2.3.7.11.13.17 (no-n)
* [[20edo]]: 2.3.7.11.13.17 (no-n)
* [[21edo]]: 2.3.5.7.13.17 (no-n)
* [[21edo]]: 2.3.5.7.13.17 (no-n)
Line 103: Line 110:
* [[26edo]]: 2.3.5.7.11.13 (lim)
* [[26edo]]: 2.3.5.7.11.13 (lim)
* [[27edo]]: 2.3.5.7.11.13 (lim)
* [[27edo]]: 2.3.5.7.11.13 (lim)
; 7 basis elements
* [[28edo]]: 2.3.5.7.11.13.19 (no-n)
* [[28edo]]: 2.3.5.7.11.13.19 (no-n)
* [[29edo]]: 2.3.5.7.11.13.19 (no-n)
* [[29edo]]: 2.3.5.7.11.13.19 (no-n)
Line 130: Line 138:
* [[51edo]]: 2.3.5+.5-.7.11+.11- (dual)
* [[51edo]]: 2.3.5+.5-.7.11+.11- (dual)
* [[52edo]]: 2.3+.3-.5.7.11.19 (dual)
* [[52edo]]: 2.3+.3-.5.7.11.19 (dual)
; 8 basis elements
* [[53edo]]: 2.3.5.7.11.13.17.19 (lim)
* [[53edo]]: 2.3.5.7.11.13.17.19 (lim)
* [[54edo]]: 2.3+.3-.5+.5-.7+.7-.11 (dual)
* [[54edo]]: 2.3+.3-.5+.5-.7+.7-.11 (dual)
Line 135: Line 144:
=== Double-decker EDOs (55-74) ===
=== Double-decker EDOs (55-74) ===
''(May complete later.)''
''(May complete later.)''
== Subgroups by subgroup type ==
=== Full prime limit ===
* [[15edo]]: 2.3.5.7.11 (lim)
* [[19edo]]: 2.3.5.7.11.13 (lim)
* [[24edo]]: 2.3.5.7.11.13 (lim)
* [[26edo]]: 2.3.5.7.11.13 (lim)
* [[27edo]]: 2.3.5.7.11.13 (lim)
* [[31edo]]: 2.3.5.7.11.13.17 (lim)
* [[33edo]]: 2.3.5.7.11.13.17 (lim)
* [[37edo]]: 2.3.5.7.11.13.17 (lim)
* [[41edo]]: 2.3.5.7.11.13.17 (lim)
* [[43edo]]: 2.3.5.7.11.13.17 (lim)
* [[46edo]]: 2.3.5.7.11.13.17 (lim)
* [[50edo]]: 2.3.5.7.11.13.17 (lim)
* [[53edo]]: 2.3.5.7.11.13.17.19 (lim)
=== No-n ===
* [[5edo]]: 2.3.7 (no-n)
* [[10edo]]: 2.3.7.13.17 (no-n)
* [[12edo]]: 2.3.5.17.19 (no-n)
* [[16edo]]: 2.5.7.13.19 (no-n)
* [[17edo]]: 2.3.7.11.13 (no-n)
* [[20edo]]: 2.3.7.11.13.17 (no-n)
* [[21edo]]: 2.3.5.7.13.17 (no-n)
* [[25edo]]: 2.3.5.7.17.19 (no-n)
* [[22edo]]: 2.3.5.7.11.17 (no-n)
* [[28edo]]: 2.3.5.7.11.13.19 (no-n)
* [[29edo]]: 2.3.5.7.11.13.19 (no-n)
* [[32edo]]: 2.3.5.7.11.17.19 (no-n)
=== Dual-n (dual-fifth) ===
* [[30edo]]: 2.3+.3-.5.7.11.13 (dual)
* [[35edo]]: 2.3+.3-.5.7.11.17 (dual)
* [[40edo]]: 2.3+.3-.5.7.11.13 (dual)
* [[42edo]]: 2.3+.3-.5+.5-.7.11 (dual)
* [[47edo]]: 2.3+.3-.5.7.11+.11- (dual)
* [[52edo]]: 2.3+.3-.5.7.11.19 (dual)
* [[54edo]]: 2.3+.3-.5+.5-.7+.7-.11 (dual)
=== Dual-n (other)===
* [[34edo]]: 2.3.5.7+.7-.11.13 (dual)
* [[36edo]]: 2.3.5+.5-.7.11+.11- (dual)
* [[38edo]]: 2.3.5.7.11+.11-.13 (dual)
* [[39edo]]: 2.3.5+.5-.7+.7-.11 (dual)
* [[44edo]]: 2.3.5.7+.7-.11.13 (dual)
* [[45edo]]: 2.3.5+.5-.7.11.17 (dual)
* [[48edo]]: 2.3.5+.5-.7.11.13 (dual)
* [[49edo]]: 2.3.5.7+.7-.11+.11- (dual)
* [[51edo]]: 2.3.5+.5-.7.11+.11- (dual)
=== Equalizer ===
No edos really fit this category.
=== Other composite ===
* [[6edo]]: 2.9.5 (comp)
* [[11edo]]: 2.9.15.7.11 (comp)
* [[13edo]]: 2.9.5.11.13.17 (comp)
* [[23edo]]: 2.9.15.21.33.13 (comp)
=== Nth-basis ===
Interestingly, all of these can be seen as 15th-basis. It might just be because in EDOs 2 is always pure, and 3 and 5 are the next simplest harmonics, so it just makes sense for them to show up as simple subgroup denominators.
* [[7edo]]: 2.3.11/3.11/5.13 (nth-b) (15th)
* [[8edo]]: 2.11/3.13/5.19 (nth-b) (15th)
* [[9edo]]: 2.5.7/3.11 (nth-b) (3rd)
* [[14edo]]: 2.3.7/5.9/5.11/5.13 (nth-b) (5th)
* [[18edo]]: 2.9.5.7/3.11 (nth-b) (3rd)
=== Other fractional ===
No edos really fit this category.
(''Technically any fractional subgroup can be said to be nth-basis, but if it were something absurdly big like 200th-basis, then it would belong in this category, not nth-basis, for the purpose of this list.''
''But, there aren't any edos where that kind of subgroup makes sense hence this category being empty.'')


== Notation of dual-3 EDOs ==
== Notation of dual-3 EDOs ==