Graph-theoretic properties of scales: Difference between revisions
Wikispaces>genewardsmith **Imported revision 358748103 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 358752181 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-08-20 11: | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-08-20 11:17:38 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>358752181</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 26: | Line 26: | ||
=The Laplace Spectrum= | =The Laplace Spectrum= | ||
If D is the diagonal matrix [Dij], with Dii being the degree of the ith vertex--that is, the number of edges connecting to that vertex--then L = D - A is called the //Laplace matrix// of the graph G, and its eigenvalues (roots of its characteristic polynomial) is the //Laplace spectrum//. The matrix L is positive-semidefinite; the Laplace spectrum has at least one zero value, with the other values real and non-negative; the number of zero values in the Laplace spectrum is equal to the number of connected components of G, and so there is just one iff G is connected. The second smallest member λ of the Laplace spectrum, which is therefore positive iff G is connected, is called the //algebraic connectivity//. The various kinds of connectivity are related by the inequality λ ≤ ν ≤ ε; that is the algebraic connectivity is less than or equal to the vertex connectivity, which is less than or equal to the edge connectivity. In the other direction, λ ≥ 2(1 - cos(π/V))ε, where V is the number of vertices. | If D is the diagonal matrix [Dij], with Dii being the degree of the ith vertex--that is, the number of edges connecting to that vertex--then L = D - A is called the //Laplace matrix// of the graph G, and its eigenvalues (roots of its characteristic polynomial) is the //Laplace spectrum//. The matrix L is positive-semidefinite; the Laplace spectrum has at least one zero value, with the other values real and non-negative; the number of zero values in the Laplace spectrum is equal to the number of connected components of G, and so there is just one iff G is connected. The second smallest member λ of the Laplace spectrum, which is therefore positive iff G is connected, is called the //algebraic connectivity//. The various kinds of connectivity are related by the inequality λ ≤ ν ≤ ε; that is the algebraic connectivity is less than or equal to the vertex connectivity, which is less than or equal to the edge connectivity. In the other direction, λ ≥ 2(1 - cos(π/V))ε, where V is the number of vertices; consequently λ > (π/V)^2 ε. | ||
We can also relate the diameter d to the algebraic connectivity, since 4/Vλ ≤ d ≤ 2((Δ+λ)/4λ)ln(V-1), where Δ is the maximal degree of the vertices of G. Also, if ρ is the mean distance, meaning the average of all of the distances in G, then 2/((V-1)λ) + (V-2)/(2(V-1)) ≤ ρ ≤ (V/(V-1))((Δ+λ)/4λ)ln(V-1). Hence when λ is small, distances will be large. | We can also relate the diameter d to the algebraic connectivity, since 4/Vλ ≤ d ≤ 2((Δ+λ)/4λ)ln(V-1), where Δ is the maximal degree of the vertices of G. Also, if ρ is the mean distance, meaning the average of all of the distances in G, then 2/((V-1)λ) + (V-2)/(2(V-1)) ≤ ρ ≤ (V/(V-1))((Δ+λ)/4λ)ln(V-1). Hence when λ is small, distances will be large. | ||
Line 67: | Line 67: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="The Laplace Spectrum"></a><!-- ws:end:WikiTextHeadingRule:6 -->The Laplace Spectrum</h1> | <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="The Laplace Spectrum"></a><!-- ws:end:WikiTextHeadingRule:6 -->The Laplace Spectrum</h1> | ||
If D is the diagonal matrix [Dij], with Dii being the degree of the ith vertex--that is, the number of edges connecting to that vertex--then L = D - A is called the <em>Laplace matrix</em> of the graph G, and its eigenvalues (roots of its characteristic polynomial) is the <em>Laplace spectrum</em>. The matrix L is positive-semidefinite; the Laplace spectrum has at least one zero value, with the other values real and non-negative; the number of zero values in the Laplace spectrum is equal to the number of connected components of G, and so there is just one iff G is connected. The second smallest member λ of the Laplace spectrum, which is therefore positive iff G is connected, is called the <em>algebraic connectivity</em>. The various kinds of connectivity are related by the inequality λ ≤ ν ≤ ε; that is the algebraic connectivity is less than or equal to the vertex connectivity, which is less than or equal to the edge connectivity. In the other direction, λ ≥ 2(1 - cos(π/V))ε, where V is the number of vertices. <br /> | If D is the diagonal matrix [Dij], with Dii being the degree of the ith vertex--that is, the number of edges connecting to that vertex--then L = D - A is called the <em>Laplace matrix</em> of the graph G, and its eigenvalues (roots of its characteristic polynomial) is the <em>Laplace spectrum</em>. The matrix L is positive-semidefinite; the Laplace spectrum has at least one zero value, with the other values real and non-negative; the number of zero values in the Laplace spectrum is equal to the number of connected components of G, and so there is just one iff G is connected. The second smallest member λ of the Laplace spectrum, which is therefore positive iff G is connected, is called the <em>algebraic connectivity</em>. The various kinds of connectivity are related by the inequality λ ≤ ν ≤ ε; that is the algebraic connectivity is less than or equal to the vertex connectivity, which is less than or equal to the edge connectivity. In the other direction, λ ≥ 2(1 - cos(π/V))ε, where V is the number of vertices; consequently λ &gt; (π/V)^2 ε.<br /> | ||
<br /> | <br /> | ||
We can also relate the diameter d to the algebraic connectivity, since 4/Vλ ≤ d ≤ 2((Δ+λ)/4λ)ln(V-1), where Δ is the maximal degree of the vertices of G. Also, if ρ is the mean distance, meaning the average of all of the distances in G, then 2/((V-1)λ) + (V-2)/(2(V-1)) ≤ ρ ≤ (V/(V-1))((Δ+λ)/4λ)ln(V-1). Hence when λ is small, distances will be large.<br /> | We can also relate the diameter d to the algebraic connectivity, since 4/Vλ ≤ d ≤ 2((Δ+λ)/4λ)ln(V-1), where Δ is the maximal degree of the vertices of G. Also, if ρ is the mean distance, meaning the average of all of the distances in G, then 2/((V-1)λ) + (V-2)/(2(V-1)) ≤ ρ ≤ (V/(V-1))((Δ+λ)/4λ)ln(V-1). Hence when λ is small, distances will be large.<br /> |