Graph-theoretic properties of scales: Difference between revisions
Wikispaces>genewardsmith **Imported revision 359707643 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 359713869 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-08-24 12: | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-08-24 12:44:44 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>359713869</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 84: | Line 84: | ||
==The marveldene== | ==The marveldene== | ||
The Ellis duodene is the 12-note 5-limit scale 1-16/15-9/8-6/5-5/4-4/3-45/32-3/2-8/5-5/3-9/5-15/8, and marvel tempering it leads to [[The Marveldene|marveldene]]. An | The Ellis duodene is the 12-note 5-limit scale 1-16/15-9/8-6/5-5/4-4/3-45/32-3/2-8/5-5/3-9/5-15/8-2, and marvel tempering it leads to [[The Marveldene|marveldene]]. An excellent tuning for marvel is [[166edo|166et]], and in that the scale becomes 0, 16, 28, 44, 53, 69, 81, 97, 113, 122, 141, 150, 166. If we use the 15-limit consonance set, {16, 18, 19, 21, 23, 25, 28, 32, 34, 37, 40, 44, 48, 50, 53, 58, 60, 63, 69, 74, 76, 78, 81, 85, 88, 90, 92, 97, 103, 106, 108, 113, 116, 118, 122, 126, 129, 132, 134, 138, 141, 143, 145, 147, 148, 150}, we obtain a graph with 55 edges and an automorphism group of order 32. Abstractly, the automorphism group is the direct product of the group of the square with the Klein 4-group; as a permutation group it is the square (dihedral group D8 of order 8) part, generated by {(1,2)(5,6)(8,11)(9,10), (1,5), (2,6)}, and the two involutions flipping two notes, (3,4) flipping Eb and E, and (7,12) flipping C and G.</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Graph-theoretic properties of scales</title></head><body><!-- ws:start:WikiTextTocRule:24:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --><a href="#Graph of a scale">Graph of a scale</a><!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextTocRule:26: --> | <a href="#Connectivity">Connectivity</a><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --> | <a href="#The Characteristic Polynomial">The Characteristic Polynomial</a><!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --> | <a href="#The Laplace Spectrum">The Laplace Spectrum</a><!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --> | <a href="#The Genus">The Genus</a><!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --> | <a href="#The Automorphism Group">The Automorphism Group</a><!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: --> | <a href="#Examples">Examples</a><!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextTocRule:32: --><!-- ws:end:WikiTextTocRule:32 --><!-- ws:start:WikiTextTocRule:33: --><!-- ws:end:WikiTextTocRule:33 --><!-- ws:start:WikiTextTocRule:34: --><!-- ws:end:WikiTextTocRule:34 --><!-- ws:start:WikiTextTocRule:35: --><!-- ws:end:WikiTextTocRule:35 --><!-- ws:start:WikiTextTocRule:36: --><!-- ws:end:WikiTextTocRule:36 --><!-- ws:start:WikiTextTocRule:37: --> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Graph-theoretic properties of scales</title></head><body><!-- ws:start:WikiTextTocRule:24:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --><a href="#Graph of a scale">Graph of a scale</a><!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextTocRule:26: --> | <a href="#Connectivity">Connectivity</a><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --> | <a href="#The Characteristic Polynomial">The Characteristic Polynomial</a><!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --> | <a href="#The Laplace Spectrum">The Laplace Spectrum</a><!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --> | <a href="#The Genus">The Genus</a><!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --> | <a href="#The Automorphism Group">The Automorphism Group</a><!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: --> | <a href="#Examples">Examples</a><!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextTocRule:32: --><!-- ws:end:WikiTextTocRule:32 --><!-- ws:start:WikiTextTocRule:33: --><!-- ws:end:WikiTextTocRule:33 --><!-- ws:start:WikiTextTocRule:34: --><!-- ws:end:WikiTextTocRule:34 --><!-- ws:start:WikiTextTocRule:35: --><!-- ws:end:WikiTextTocRule:35 --><!-- ws:start:WikiTextTocRule:36: --><!-- ws:end:WikiTextTocRule:36 --><!-- ws:start:WikiTextTocRule:37: --> | ||
Line 164: | Line 164: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:22:&lt;h2&gt; --><h2 id="toc11"><a name="Examples-The marveldene"></a><!-- ws:end:WikiTextHeadingRule:22 -->The marveldene</h2> | <!-- ws:start:WikiTextHeadingRule:22:&lt;h2&gt; --><h2 id="toc11"><a name="Examples-The marveldene"></a><!-- ws:end:WikiTextHeadingRule:22 -->The marveldene</h2> | ||
The Ellis duodene is the 12-note 5-limit scale 1-16/15-9/8-6/5-5/4-4/3-45/32-3/2-8/5-5/3-9/5-15/8, and marvel tempering it leads to <a class="wiki_link" href="/The%20Marveldene">marveldene</a>. An | The Ellis duodene is the 12-note 5-limit scale 1-16/15-9/8-6/5-5/4-4/3-45/32-3/2-8/5-5/3-9/5-15/8-2, and marvel tempering it leads to <a class="wiki_link" href="/The%20Marveldene">marveldene</a>. An excellent tuning for marvel is <a class="wiki_link" href="/166edo">166et</a>, and in that the scale becomes 0, 16, 28, 44, 53, 69, 81, 97, 113, 122, 141, 150, 166. If we use the 15-limit consonance set, {16, 18, 19, 21, 23, 25, 28, 32, 34, 37, 40, 44, 48, 50, 53, 58, 60, 63, 69, 74, 76, 78, 81, 85, 88, 90, 92, 97, 103, 106, 108, 113, 116, 118, 122, 126, 129, 132, 134, 138, 141, 143, 145, 147, 148, 150}, we obtain a graph with 55 edges and an automorphism group of order 32. Abstractly, the automorphism group is the direct product of the group of the square with the Klein 4-group; as a permutation group it is the square (dihedral group D8 of order 8) part, generated by {(1,2)(5,6)(8,11)(9,10), (1,5), (2,6)}, and the two involutions flipping two notes, (3,4) flipping Eb and E, and (7,12) flipping C and G.</body></html></pre></div> |