Nicetone: Difference between revisions

ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
Line 1: Line 1:
'''Nicetone''' (also known as the '''Zarlino pattern''' or '''Ptolemaic diatonic''') is a 7-note [[Maximum variety|maximum-variety-3]] scale with the [[step signature]] 3L 2M 2s. Nicetone is a [[chiral]] scale with left-handed (LH, step pattern LMLsMLs) and right-handed (RH, step pattern LMLsLMs) variants that are rotationally non-equivalent. [[15edo]] is the first equal division that supports nicetone.
'''Nicetone''' (also known as the '''Zarlino pattern''' or '''Ptolemaic diatonic''') is a 7-note [[Maximum variety|maximum-variety-3]] scale with the [[step signature]] {{nowrap|3L 2M 2s}}. Nicetone is a [[chiral]] scale with left-handed (LH, step pattern LMLsMLs) and right-handed (RH, step pattern LMLsLMs) variants that are rotationally non-equivalent. [[15edo]] is the first equal division that supports nicetone.


Nicetone has the same pattern of the [[5-limit]] [[Zarlino]] scale, though it encompasses the whole range of 3L 2M 2s. It's also a subset of the 5L 2m 3s [[blackdye]] scale.
Nicetone has the same pattern of the [[5-limit]] [[Zarlino]] scale, though it encompasses the whole range of {{nowrap|3L 2M 2s}}. It's also a subset of the {{nowrap|5L 2m 3s}} [[blackdye]] scale.


Nicetone is intermediate between the [[5L 2s]] diatonic scale and the [[3L 4s]] neutral scale.
Nicetone is intermediate between the [[5L 2s]] diatonic scale and the [[3L 4s]] neutral scale.


Nicetone can be tuned as a [[5-limit]] JI scale or a tempered version thereof, where L represents [[9/8]], M represents [[10/9]], and s represents [[16/15]].
Nicetone can be tuned as a [[5-limit]] JI scale or a tempered version thereof, where L represents [[9/8]], M represents [[10/9]], and s represents [[16/15]].
Line 15: Line 15:
! Name !! Structure !! Step Sizes !! Graphical Representation
! Name !! Structure !! Step Sizes !! Graphical Representation
|-
|-
| Mosh || 3L 4s || 7\33, 3\33 || {{step vis| 3 7 3 7 3 3 7 }}
| Mosh || {{nowrap|3L 4s}} || 7\33, 3\33 || {{step vis| 3 7 3 7 3 3 7 }}
|-
|-
| Nicetone || 3L 2M 2s || 7\33, 4\33, 2\33 || {{step vis| 4 7 2 7 4 2 7 }}
| Nicetone || {{nowrap|3L 2M 2s}} || 7\33, 4\33, 2\33 || {{step vis| 4 7 2 7 4 2 7 }}
|-
|-
| Antipentic || 3L 2s || 7\33, 6\33 || {{step vis| 6 7 7 6 7 }}
| Antipentic || {{nowrap|3L 2s}} || 7\33, 6\33 || {{step vis| 6 7 7 6 7 }}
|}
|}


== Intervals ==
== Intervals ==
The following is a table of nicetone intervals and their abstract sizes in terms of L, M and s. Given concrete sizes of L, M and s in EDO steps or cents, you can compute the concrete size of any interval in nicetone using the following expressions.
The following is a table of nicetone intervals and their abstract sizes in terms of L, M, and s. Given concrete sizes of L, M, and s in EDO steps or cents, you can compute the concrete size of any interval in nicetone using the following expressions.


{| class="wikitable right-2 right-3 right-4 right-5 right-6 right-7"
{| class="wikitable right-2 right-3 right-4 right-5 right-6 right-7"
Line 31: Line 31:
! Sizes
! Sizes
! 5-limit JI
! 5-limit JI
! [[15edo]] <br />({{nowrap|L:M:s {{=}} 3:2:1}})
! [[15edo]]<br />({{nowrap|L:M:s {{=}} 3:2:1}})
! [[41edo]] <br />({{nowrap|L:M:s {{=}} 7:6:4}})
! [[41edo]]<br />({{nowrap|L:M:s {{=}} 7:6:4}})
|- style="background-color: #eaeaff;"
|- style="background-color: #eaeaff;"
! rowspan="3" | Second <br />([[TAMNAMS|1-step]])
! rowspan="3" | Second<br />([[TAMNAMS|1-step]])
! style="font-size: 0.75em;" | Small
! style="font-size: 0.75em;" | Small
| s
| s
Line 53: Line 53:
| 7\41, 204.88¢
| 7\41, 204.88¢
|-
|-
! rowspan="3" | Third <br />([[TAMNAMS|2-step]])
! rowspan="3" | Third<br />([[TAMNAMS|2-step]])
! style="font-size: 0.75em;" | Small
! style="font-size: 0.75em;" | Small
| M + s
| M + s
Line 72: Line 72:
| 13\41, 380.49¢
| 13\41, 380.49¢
|- style="background-color: "#eaeaff;"
|- style="background-color: "#eaeaff;"
! rowspan="3" | Fourth <br />([[TAMNAMS|3-step]])
! rowspan="3" | Fourth<br />([[TAMNAMS|3-step]])
! style="font-size: 0.75em;" | Small
! style="font-size: 0.75em;" | Small
| L + M + s
| L + M + s
Line 91: Line 91:
| 20\41, 585.37¢
| 20\41, 585.37¢
|-
|-
! rowspan="3" | Fifth <br />([[TAMNAMS|4-step]])
! rowspan="3" | Fifth<br />([[TAMNAMS|4-step]])
! style="font-size: 0.75em;" | Small
! style="font-size: 0.75em;" | Small
| L + M + 2s
| L + M + 2s
Line 110: Line 110:
| 24\41, 702.44¢
| 24\41, 702.44¢
|- style="background-color: "#eaeaff;"
|- style="background-color: "#eaeaff;"
! rowspan="3" | Sixth <br />([[TAMNAMS|5-step]])
! rowspan="3" | Sixth<br />([[TAMNAMS|5-step]])
! style="font-size: 0.75em;" | Small
! style="font-size: 0.75em;" | Small
| 2L + M + 2s
| 2L + M + 2s
Line 129: Line 129:
| 31\41, 907.32¢
| 31\41, 907.32¢
|-
|-
! rowspan="3" | Seventh <br />([[TAMNAMS|6-step]])
! rowspan="3" | Seventh<br />([[TAMNAMS|6-step]])
! style="font-size: 0.75em;" | Small
! style="font-size: 0.75em;" | Small
| 2L + 2M + 2s
| 2L + 2M + 2s
Line 158: Line 158:
! Left handed !! Right handed
! Left handed !! Right handed
|-
|-
| LMLsMLs <br />LH Nice-Lydian
| LMLsMLs<br />LH Nice-Lydian
| LMLsLMs <br />RH Nice-Lydian
| LMLsLMs<br />RH Nice-Lydian
|-
|-
| MLsLMLs <br />LH Nice-Ionian
| MLsLMLs<br />LH Nice-Ionian
| LMsLMLs <br />RH Nice-Ionian
| LMsLMLs<br />RH Nice-Ionian
|-
|-
| MLsMLsL <br />LH Nice-Mixolydian
| MLsMLsL<br />LH Nice-Mixolydian
| MLsLMsL <br />RH Nice-Mixolydian
| MLsLMsL<br />RH Nice-Mixolydian
|-
|-
| LsLMLsM <br />LH Nice-Dorian
| LsLMLsM<br />LH Nice-Dorian
| MsLMLsL <br />RH Nice-Dorian
| MsLMLsL<br />RH Nice-Dorian
|-
|-
| LsMLsLM <br />LH Nice-Aeolian
| LsMLsLM<br />LH Nice-Aeolian
| LsLMsLM <br />RH Nice-Aeolian
| LsLMsLM<br />RH Nice-Aeolian
|-
|-
| sLMLsML <br />LH Nice-Phrygian
| sLMLsML<br />LH Nice-Phrygian
| sLMLsLM <br />RH Nice-Phrygian
| sLMLsLM<br />RH Nice-Phrygian
|-
|-
| sMLsLML <br />LH Nice-Locrian
| sMLsLML<br />LH Nice-Locrian
| sLMsLML <br />RH Nice-Locrian
| sLMsLML<br />RH Nice-Locrian
|}
|}


Line 189: Line 189:
! Tuning range (in [[octave]]s)
! Tuning range (in [[octave]]s)
|-
|-
! Outer generator <br />(''G''<sub>1</sub> = 2L + M + s)
! Outer generator<br />({{nowrap|''G''<sub>1</sub> {{=}} 2L + M + s}})
| <math>\displaystyle \frac{4}{7} &lt; G_\text{1} &lt; \frac{2}{3}</math>
| <math>\displaystyle \frac{4}{7} &lt; G_\text{1} &lt; \frac{2}{3}</math>
|-
|-
! RH inner generator <br />(''G''<sub>2R</sub> = L + M)
! RH inner generator<br />({{nowrap|''G''<sub>2R</sub> {{=}} L + M}})
| <math>\displaystyle \frac{1}{2} G_\text{1} &lt; G_\text{2R} &lt; 4 G_\text{1} - 2 \text{ for } \frac{4}{7} &lt; G_\text{1} &le; \frac{3}{5}</math> <br><math>\displaystyle \frac{1}{2} G_\text{1} &lt; G_\text{2R} &lt; 1 - G_\text{1} \text{ for }\frac{3}{5} &le; G_\text{1} &lt; \frac{2}{3}</math>
| <math>\displaystyle \frac{1}{2} G_\text{1} &lt; G_\text{2R} &lt; 4 G_\text{1} - 2 \text{ for } \frac{4}{7} &lt; G_\text{1} &le; \frac{3}{5}</math> <br><math>\displaystyle \frac{1}{2} G_\text{1} &lt; G_\text{2R} &lt; 1 - G_\text{1} \text{ for }\frac{3}{5} &le; G_\text{1} &lt; \frac{2}{3}</math>
|-
|-
! LH inner generator <br />(''G''<sub>2L</sub> = L + s)
! LH inner generator <br />({{nowrap|''G''<sub>2L</sub> {{=}} L + s}})
| <math>\displaystyle 2 - 3 G_\text{1} &lt; G_\text{2L} &lt; \frac{1}{2} G_\text{1} \text{ for }\frac{4}{7} &lt; G_\text{1} &le; \frac{3}{5}</math> <br><math>\displaystyle 2 G_\text{1} - 1 &lt; G_\text{2L} &lt; \frac{1}{2} G_\text{1} \text{ for }\frac{3}{5} &le; G_\text{1} &lt; \frac{2}{3}</math>
| <math>\displaystyle 2 - 3 G_\text{1} &lt; G_\text{2L} &lt; \frac{1}{2} G_\text{1} \text{ for }\frac{4}{7} &lt; G_\text{1} &le; \frac{3}{5}</math> <br><math>\displaystyle 2 G_\text{1} - 1 &lt; G_\text{2L} &lt; \frac{1}{2} G_\text{1} \text{ for }\frac{3}{5} &le; G_\text{1} &lt; \frac{2}{3}</math>
|-
|-
! Large step <br />(L = 2''G''<sub>1</sub> - 1)
! Large step <br />({{nowrap|L {{=}} 2''G''<sub>1</sub> &minus; 1}})
| <math>\displaystyle \frac{1}{7} &lt; L &lt; \frac{1}{3}</math>
| <math>\displaystyle \frac{1}{7} &lt; L &lt; \frac{1}{3}</math>
|-
|-
! Middle step <br />(M = 1 - ''G''<sub>1</sub> - ''G''<sub>2L</sub>)
! Middle step <br />({{nowrap|M {{=}} 1 &minus; ''G''<sub>1</sub> &minus; ''G''<sub>2L</sub>}})
| <math>\displaystyle \frac{1}{4} (1 - 3 L) &lt; M &lt; L \text{ for } \frac{1}{7} &lt; L &le; \frac{1}{5}</math> <br><math>\displaystyle \frac{1}{4} (1 - 3 L) &lt; M &lt; \frac{1}{2} (1 - 3 L) \text{for} \frac{1}{5} &le; L &lt; \frac{1}{3}</math>
| <math>\displaystyle \frac{1}{4} (1 - 3 L) &lt; M &lt; L \text{ for } \frac{1}{7} &lt; L &le; \frac{1}{5}</math> <br><math>\displaystyle \frac{1}{4} (1 - 3 L) &lt; M &lt; \frac{1}{2} (1 - 3 L) \text{for} \frac{1}{5} &le; L &lt; \frac{1}{3}</math>
|-
|-
! Small step <br />(s = 1 - ''G''<sub>1</sub> - ''G''<sub>2R</sub>)
! Small step <br />({{nowrap|s {{=}} 1 &minus; ''G''<sub>1</sub> &minus; ''G''<sub>2R</sub>}})
| <math>\displaystyle \frac{1}{2} (1 - 5 L) &lt; s &lt; \frac{1}{4} (1 - 3 L) \text{ for } \frac{1}{7} &lt; L &le; \frac{1}{5}</math> <br><math>\displaystyle 0 &lt; s &lt; \frac{1}{4} (1 - 3 L) \text{for} \frac{1}{5} &le; L &lt; \frac{1}{3}</math>
| <math>\displaystyle \frac{1}{2} (1 - 5 L) &lt; s &lt; \frac{1}{4} (1 - 3 L) \text{ for } \frac{1}{7} &lt; L &le; \frac{1}{5}</math> <br><math>\displaystyle 0 &lt; s &lt; \frac{1}{4} (1 - 3 L) \text{for} \frac{1}{5} &le; L &lt; \frac{1}{3}</math>
|}
|}