Nicetone: Difference between revisions
ArrowHead294 (talk | contribs) mNo edit summary |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
'''Nicetone''' (also known as the '''Zarlino pattern''' or '''Ptolemaic diatonic''') is a 7-note [[Maximum variety|maximum-variety-3]] scale with the [[step signature]] 3L 2M 2s. Nicetone is a [[chiral]] scale with left-handed (LH, step pattern LMLsMLs) and right-handed (RH, step pattern LMLsLMs) variants that are rotationally non-equivalent. [[15edo]] is the first equal division that supports nicetone. | '''Nicetone''' (also known as the '''Zarlino pattern''' or '''Ptolemaic diatonic''') is a 7-note [[Maximum variety|maximum-variety-3]] scale with the [[step signature]] {{nowrap|3L 2M 2s}}. Nicetone is a [[chiral]] scale with left-handed (LH, step pattern LMLsMLs) and right-handed (RH, step pattern LMLsLMs) variants that are rotationally non-equivalent. [[15edo]] is the first equal division that supports nicetone. | ||
Nicetone has the same pattern of the [[5-limit]] [[Zarlino]] scale, though it encompasses the whole range of 3L 2M 2s. It's also a subset of the 5L 2m 3s [[blackdye]] scale. | Nicetone has the same pattern of the [[5-limit]] [[Zarlino]] scale, though it encompasses the whole range of {{nowrap|3L 2M 2s}}. It's also a subset of the {{nowrap|5L 2m 3s}} [[blackdye]] scale. | ||
Nicetone is intermediate between the [[5L 2s]] diatonic scale and the [[3L 4s]] neutral scale. | Nicetone is intermediate between the [[5L 2s]] diatonic scale and the [[3L 4s]] neutral scale. | ||
Nicetone can be tuned as a [[5-limit]] JI scale or a tempered version thereof, where L represents [[9/8]], M represents [[10/9]], and s represents [[16/15]]. | Nicetone can be tuned as a [[5-limit]] JI scale or a tempered version thereof, where L represents [[9/8]], M represents [[10/9]], and s represents [[16/15]]. | ||
Line 15: | Line 15: | ||
! Name !! Structure !! Step Sizes !! Graphical Representation | ! Name !! Structure !! Step Sizes !! Graphical Representation | ||
|- | |- | ||
| Mosh || 3L 4s || 7\33, 3\33 || {{step vis| 3 7 3 7 3 3 7 }} | | Mosh || {{nowrap|3L 4s}} || 7\33, 3\33 || {{step vis| 3 7 3 7 3 3 7 }} | ||
|- | |- | ||
| Nicetone || 3L 2M 2s || 7\33, 4\33, 2\33 || {{step vis| 4 7 2 7 4 2 7 }} | | Nicetone || {{nowrap|3L 2M 2s}} || 7\33, 4\33, 2\33 || {{step vis| 4 7 2 7 4 2 7 }} | ||
|- | |- | ||
| Antipentic || 3L 2s || 7\33, 6\33 || {{step vis| 6 7 7 6 7 }} | | Antipentic || {{nowrap|3L 2s}} || 7\33, 6\33 || {{step vis| 6 7 7 6 7 }} | ||
|} | |} | ||
== Intervals == | == Intervals == | ||
The following is a table of nicetone intervals and their abstract sizes in terms of L, M and s. Given concrete sizes of L, M and s in EDO steps or cents, you can compute the concrete size of any interval in nicetone using the following expressions. | The following is a table of nicetone intervals and their abstract sizes in terms of L, M, and s. Given concrete sizes of L, M, and s in EDO steps or cents, you can compute the concrete size of any interval in nicetone using the following expressions. | ||
{| class="wikitable right-2 right-3 right-4 right-5 right-6 right-7" | {| class="wikitable right-2 right-3 right-4 right-5 right-6 right-7" | ||
Line 31: | Line 31: | ||
! Sizes | ! Sizes | ||
! 5-limit JI | ! 5-limit JI | ||
! [[15edo]] <br />({{nowrap|L:M:s {{=}} 3:2:1}}) | ! [[15edo]]<br />({{nowrap|L:M:s {{=}} 3:2:1}}) | ||
! [[41edo]] <br />({{nowrap|L:M:s {{=}} 7:6:4}}) | ! [[41edo]]<br />({{nowrap|L:M:s {{=}} 7:6:4}}) | ||
|- style="background-color: #eaeaff;" | |- style="background-color: #eaeaff;" | ||
! rowspan="3" | Second <br />([[TAMNAMS|1-step]]) | ! rowspan="3" | Second<br />([[TAMNAMS|1-step]]) | ||
! style="font-size: 0.75em;" | Small | ! style="font-size: 0.75em;" | Small | ||
| s | | s | ||
Line 53: | Line 53: | ||
| 7\41, 204.88¢ | | 7\41, 204.88¢ | ||
|- | |- | ||
! rowspan="3" | Third <br />([[TAMNAMS|2-step]]) | ! rowspan="3" | Third<br />([[TAMNAMS|2-step]]) | ||
! style="font-size: 0.75em;" | Small | ! style="font-size: 0.75em;" | Small | ||
| M + s | | M + s | ||
Line 72: | Line 72: | ||
| 13\41, 380.49¢ | | 13\41, 380.49¢ | ||
|- style="background-color: "#eaeaff;" | |- style="background-color: "#eaeaff;" | ||
! rowspan="3" | Fourth <br />([[TAMNAMS|3-step]]) | ! rowspan="3" | Fourth<br />([[TAMNAMS|3-step]]) | ||
! style="font-size: 0.75em;" | Small | ! style="font-size: 0.75em;" | Small | ||
| L + M + s | | L + M + s | ||
Line 91: | Line 91: | ||
| 20\41, 585.37¢ | | 20\41, 585.37¢ | ||
|- | |- | ||
! rowspan="3" | Fifth <br />([[TAMNAMS|4-step]]) | ! rowspan="3" | Fifth<br />([[TAMNAMS|4-step]]) | ||
! style="font-size: 0.75em;" | Small | ! style="font-size: 0.75em;" | Small | ||
| L + M + 2s | | L + M + 2s | ||
Line 110: | Line 110: | ||
| 24\41, 702.44¢ | | 24\41, 702.44¢ | ||
|- style="background-color: "#eaeaff;" | |- style="background-color: "#eaeaff;" | ||
! rowspan="3" | Sixth <br />([[TAMNAMS|5-step]]) | ! rowspan="3" | Sixth<br />([[TAMNAMS|5-step]]) | ||
! style="font-size: 0.75em;" | Small | ! style="font-size: 0.75em;" | Small | ||
| 2L + M + 2s | | 2L + M + 2s | ||
Line 129: | Line 129: | ||
| 31\41, 907.32¢ | | 31\41, 907.32¢ | ||
|- | |- | ||
! rowspan="3" | Seventh <br />([[TAMNAMS|6-step]]) | ! rowspan="3" | Seventh<br />([[TAMNAMS|6-step]]) | ||
! style="font-size: 0.75em;" | Small | ! style="font-size: 0.75em;" | Small | ||
| 2L + 2M + 2s | | 2L + 2M + 2s | ||
Line 158: | Line 158: | ||
! Left handed !! Right handed | ! Left handed !! Right handed | ||
|- | |- | ||
| LMLsMLs <br />LH Nice-Lydian | | LMLsMLs<br />LH Nice-Lydian | ||
| LMLsLMs <br />RH Nice-Lydian | | LMLsLMs<br />RH Nice-Lydian | ||
|- | |- | ||
| MLsLMLs <br />LH Nice-Ionian | | MLsLMLs<br />LH Nice-Ionian | ||
| LMsLMLs <br />RH Nice-Ionian | | LMsLMLs<br />RH Nice-Ionian | ||
|- | |- | ||
| MLsMLsL <br />LH Nice-Mixolydian | | MLsMLsL<br />LH Nice-Mixolydian | ||
| MLsLMsL <br />RH Nice-Mixolydian | | MLsLMsL<br />RH Nice-Mixolydian | ||
|- | |- | ||
| LsLMLsM <br />LH Nice-Dorian | | LsLMLsM<br />LH Nice-Dorian | ||
| MsLMLsL <br />RH Nice-Dorian | | MsLMLsL<br />RH Nice-Dorian | ||
|- | |- | ||
| LsMLsLM <br />LH Nice-Aeolian | | LsMLsLM<br />LH Nice-Aeolian | ||
| LsLMsLM <br />RH Nice-Aeolian | | LsLMsLM<br />RH Nice-Aeolian | ||
|- | |- | ||
| sLMLsML <br />LH Nice-Phrygian | | sLMLsML<br />LH Nice-Phrygian | ||
| sLMLsLM <br />RH Nice-Phrygian | | sLMLsLM<br />RH Nice-Phrygian | ||
|- | |- | ||
| sMLsLML <br />LH Nice-Locrian | | sMLsLML<br />LH Nice-Locrian | ||
| sLMsLML <br />RH Nice-Locrian | | sLMsLML<br />RH Nice-Locrian | ||
|} | |} | ||
Line 189: | Line 189: | ||
! Tuning range (in [[octave]]s) | ! Tuning range (in [[octave]]s) | ||
|- | |- | ||
! Outer generator <br />(''G''<sub>1</sub> = 2L + M + s) | ! Outer generator<br />({{nowrap|''G''<sub>1</sub> {{=}} 2L + M + s}}) | ||
| <math>\displaystyle \frac{4}{7} < G_\text{1} < \frac{2}{3}</math> | | <math>\displaystyle \frac{4}{7} < G_\text{1} < \frac{2}{3}</math> | ||
|- | |- | ||
! RH inner generator <br />(''G''<sub>2R</sub> = L + M) | ! RH inner generator<br />({{nowrap|''G''<sub>2R</sub> {{=}} L + M}}) | ||
| <math>\displaystyle \frac{1}{2} G_\text{1} < G_\text{2R} < 4 G_\text{1} - 2 \text{ for } \frac{4}{7} < G_\text{1} ≤ \frac{3}{5}</math> <br><math>\displaystyle \frac{1}{2} G_\text{1} < G_\text{2R} < 1 - G_\text{1} \text{ for }\frac{3}{5} ≤ G_\text{1} < \frac{2}{3}</math> | | <math>\displaystyle \frac{1}{2} G_\text{1} < G_\text{2R} < 4 G_\text{1} - 2 \text{ for } \frac{4}{7} < G_\text{1} ≤ \frac{3}{5}</math> <br><math>\displaystyle \frac{1}{2} G_\text{1} < G_\text{2R} < 1 - G_\text{1} \text{ for }\frac{3}{5} ≤ G_\text{1} < \frac{2}{3}</math> | ||
|- | |- | ||
! LH inner generator <br />(''G''<sub>2L</sub> = L + s) | ! LH inner generator <br />({{nowrap|''G''<sub>2L</sub> {{=}} L + s}}) | ||
| <math>\displaystyle 2 - 3 G_\text{1} < G_\text{2L} < \frac{1}{2} G_\text{1} \text{ for }\frac{4}{7} < G_\text{1} ≤ \frac{3}{5}</math> <br><math>\displaystyle 2 G_\text{1} - 1 < G_\text{2L} < \frac{1}{2} G_\text{1} \text{ for }\frac{3}{5} ≤ G_\text{1} < \frac{2}{3}</math> | | <math>\displaystyle 2 - 3 G_\text{1} < G_\text{2L} < \frac{1}{2} G_\text{1} \text{ for }\frac{4}{7} < G_\text{1} ≤ \frac{3}{5}</math> <br><math>\displaystyle 2 G_\text{1} - 1 < G_\text{2L} < \frac{1}{2} G_\text{1} \text{ for }\frac{3}{5} ≤ G_\text{1} < \frac{2}{3}</math> | ||
|- | |- | ||
! Large step <br />(L = 2''G''<sub>1</sub> | ! Large step <br />({{nowrap|L {{=}} 2''G''<sub>1</sub> − 1}}) | ||
| <math>\displaystyle \frac{1}{7} < L < \frac{1}{3}</math> | | <math>\displaystyle \frac{1}{7} < L < \frac{1}{3}</math> | ||
|- | |- | ||
! Middle step <br />(M = 1 | ! Middle step <br />({{nowrap|M {{=}} 1 − ''G''<sub>1</sub> − ''G''<sub>2L</sub>}}) | ||
| <math>\displaystyle \frac{1}{4} (1 - 3 L) < M < L \text{ for } \frac{1}{7} < L ≤ \frac{1}{5}</math> <br><math>\displaystyle \frac{1}{4} (1 - 3 L) < M < \frac{1}{2} (1 - 3 L) \text{for} \frac{1}{5} ≤ L < \frac{1}{3}</math> | | <math>\displaystyle \frac{1}{4} (1 - 3 L) < M < L \text{ for } \frac{1}{7} < L ≤ \frac{1}{5}</math> <br><math>\displaystyle \frac{1}{4} (1 - 3 L) < M < \frac{1}{2} (1 - 3 L) \text{for} \frac{1}{5} ≤ L < \frac{1}{3}</math> | ||
|- | |- | ||
! Small step <br />(s = 1 | ! Small step <br />({{nowrap|s {{=}} 1 − ''G''<sub>1</sub> − ''G''<sub>2R</sub>}}) | ||
| <math>\displaystyle \frac{1}{2} (1 - 5 L) < s < \frac{1}{4} (1 - 3 L) \text{ for } \frac{1}{7} < L ≤ \frac{1}{5}</math> <br><math>\displaystyle 0 < s < \frac{1}{4} (1 - 3 L) \text{for} \frac{1}{5} ≤ L < \frac{1}{3}</math> | | <math>\displaystyle \frac{1}{2} (1 - 5 L) < s < \frac{1}{4} (1 - 3 L) \text{ for } \frac{1}{7} < L ≤ \frac{1}{5}</math> <br><math>\displaystyle 0 < s < \frac{1}{4} (1 - 3 L) \text{for} \frac{1}{5} ≤ L < \frac{1}{3}</math> | ||
|} | |} |