Graph-theoretic properties of scales: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 509653300 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 511015404 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2014-05-18 13:44:02 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2014-05-24 16:52:47 UTC</tt>.<br>
: The original revision id was <tt>509653300</tt>.<br>
: The original revision id was <tt>511015404</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]]


[[image:mathhazard.jpg align="center"]]
[[image:mathhazard.jpg align="left"]]
=Graph of a scale=  
=Graph of a scale=  
Given a [[periodic scale]], meaning a scale whose steps repeat, and assuming some multiple of the period is an interval of equivalence (usually this means the octave, ie interval of 2, which from now on we will assume is the interval of equivalence) then we may reduce the scale to a finite set S of pitch classes. This relates to the usual way of defining a scale, as used for instance by [[Scala]]. If we say 1-9/8-5/4-4/3-3/2-5/3-15/8-2 is a scale, we mean that each step of it represents a class of octave-equivalent pitches, so that "5/4" represents {...5/8, 5/4, 5/2, 5, 10 ...} and both "1" and "2" mean {...1/4, 1/2, 1, 2, 4...}. Suppose we have a finite set of pitches C strictly within the octave, so that s∊C entails 1 &lt; s &lt; 2, and suppose if s∊C then also 2/s∊C. The elements of C represent consonant pitch classes exclusive of the unison-octave class.
Given a [[periodic scale]], meaning a scale whose steps repeat, and assuming some multiple of the period is an interval of equivalence (usually this means the octave, ie interval of 2, which from now on we will assume is the interval of equivalence) then we may reduce the scale to a finite set S of pitch classes. This relates to the usual way of defining a scale, as used for instance by [[Scala]]. If we say 1-9/8-5/4-4/3-3/2-5/3-15/8-2 is a scale, we mean that each step of it represents a class of octave-equivalent pitches, so that "5/4" represents {...5/8, 5/4, 5/2, 5, 10 ...} and both "1" and "2" mean {...1/4, 1/2, 1, 2, 4...}. Suppose we have a finite set of pitches C strictly within the octave, so that s∊C entails 1 &lt; s &lt; 2, and suppose if s∊C then also 2/s∊C. The elements of C represent consonant pitch classes exclusive of the unison-octave class.
Line 250: Line 250:
&lt;!-- ws:end:WikiTextTocRule:99 --&gt;&lt;!-- ws:start:WikiTextTocRule:100: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:99 --&gt;&lt;!-- ws:start:WikiTextTocRule:100: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:100 --&gt;&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:100 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:101:&amp;lt;div style=&amp;quot;text-align: center&amp;quot;&amp;gt;&amp;lt;img src=&amp;quot;/file/view/mathhazard.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt;&amp;lt;/div&amp;gt; --&gt;&lt;div style="text-align: center"&gt;&lt;img src="/file/view/mathhazard.jpg" alt="mathhazard.jpg" title="mathhazard.jpg" /&gt;&lt;/div&gt;&lt;!-- ws:end:WikiTextLocalImageRule:101 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Graph of a scale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Graph of a scale&lt;/h1&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:101:&amp;lt;img src=&amp;quot;/file/view/mathhazard.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; align=&amp;quot;left&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/mathhazard.jpg" alt="mathhazard.jpg" title="mathhazard.jpg" align="left" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:101 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Graph of a scale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Graph of a scale&lt;/h1&gt;
  Given a &lt;a class="wiki_link" href="/periodic%20scale"&gt;periodic scale&lt;/a&gt;, meaning a scale whose steps repeat, and assuming some multiple of the period is an interval of equivalence (usually this means the octave, ie interval of 2, which from now on we will assume is the interval of equivalence) then we may reduce the scale to a finite set S of pitch classes. This relates to the usual way of defining a scale, as used for instance by &lt;a class="wiki_link" href="/Scala"&gt;Scala&lt;/a&gt;. If we say 1-9/8-5/4-4/3-3/2-5/3-15/8-2 is a scale, we mean that each step of it represents a class of octave-equivalent pitches, so that &amp;quot;5/4&amp;quot; represents {...5/8, 5/4, 5/2, 5, 10 ...} and both &amp;quot;1&amp;quot; and &amp;quot;2&amp;quot; mean {...1/4, 1/2, 1, 2, 4...}. Suppose we have a finite set of pitches C strictly within the octave, so that s∊C entails 1 &amp;lt; s &amp;lt; 2, and suppose if s∊C then also 2/s∊C. The elements of C represent consonant pitch classes exclusive of the unison-octave class.&lt;br /&gt;
  Given a &lt;a class="wiki_link" href="/periodic%20scale"&gt;periodic scale&lt;/a&gt;, meaning a scale whose steps repeat, and assuming some multiple of the period is an interval of equivalence (usually this means the octave, ie interval of 2, which from now on we will assume is the interval of equivalence) then we may reduce the scale to a finite set S of pitch classes. This relates to the usual way of defining a scale, as used for instance by &lt;a class="wiki_link" href="/Scala"&gt;Scala&lt;/a&gt;. If we say 1-9/8-5/4-4/3-3/2-5/3-15/8-2 is a scale, we mean that each step of it represents a class of octave-equivalent pitches, so that &amp;quot;5/4&amp;quot; represents {...5/8, 5/4, 5/2, 5, 10 ...} and both &amp;quot;1&amp;quot; and &amp;quot;2&amp;quot; mean {...1/4, 1/2, 1, 2, 4...}. Suppose we have a finite set of pitches C strictly within the octave, so that s∊C entails 1 &amp;lt; s &amp;lt; 2, and suppose if s∊C then also 2/s∊C. The elements of C represent consonant pitch classes exclusive of the unison-octave class.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;