Generator: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 181289761 - Original comment: **
 
Wikispaces>genewardsmith
**Imported revision 181292097 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-11-19 18:27:41 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-11-19 18:45:04 UTC</tt>.<br>
: The original revision id was <tt>181289761</tt>.<br>
: The original revision id was <tt>181292097</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 22: Line 22:
For example, for [[Gamelismic clan|miracle temperament]] [2, 15/14] defines a rank two 7-limit subgroup whose [[Normal lists|normal interval list]] is [2, 15/7]. We might also use [2, 16/15], with a normal interval list [2, 15]. When tempered by miracle, [2, 15/14] and [2, 16/15] lead to the same notes; hence we can use either for a transversal. Either pair may be considered a generating set for the abstract temperament.
For example, for [[Gamelismic clan|miracle temperament]] [2, 15/14] defines a rank two 7-limit subgroup whose [[Normal lists|normal interval list]] is [2, 15/7]. We might also use [2, 16/15], with a normal interval list [2, 15]. When tempered by miracle, [2, 15/14] and [2, 16/15] lead to the same notes; hence we can use either for a transversal. Either pair may be considered a generating set for the abstract temperament.


</pre></div>
Alternatively, using "v" to represent the interior product, we have mir = &lt;&lt;6 -7 -2 -25 -20 15|| for the wedgie of 7-limit miracle. Then the interior product mir v |1 0 0 0&gt; = &lt;0 -6 7 2|, with 15/14 we get mir v |-1 1 1 -1&gt; = &lt;1 1 3 3|, and with 16/15 we get mir v |4 -1 -1 0&gt; = &lt;1 1 3 3|. Unlike the case for just intonation subgroups, the rank two group for the abstract temperament in terms of interior products is already exactly the same.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Generators&lt;/title&gt;&lt;/head&gt;&lt;body&gt;A &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Generating_set_of_a_group" rel="nofollow"&gt;set of generators&lt;/a&gt; for a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Group_%28mathematics%29" rel="nofollow"&gt;group&lt;/a&gt; is a subset of the elements of the group which is not contained in any &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Subgroup" rel="nofollow"&gt;proper subgroup&lt;/a&gt;, which is to say, any subgroup which is not the whole group. If the set is a finite set, the group is called finitely generated. If it is also an &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Abelian_group" rel="nofollow"&gt;abelian group&lt;/a&gt;, it is called a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Finitely_generated_abelian_group" rel="nofollow"&gt;finitely generated abelian group&lt;/a&gt;.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Generators&lt;/title&gt;&lt;/head&gt;&lt;body&gt;A &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Generating_set_of_a_group" rel="nofollow"&gt;set of generators&lt;/a&gt; for a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Group_%28mathematics%29" rel="nofollow"&gt;group&lt;/a&gt; is a subset of the elements of the group which is not contained in any &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Subgroup" rel="nofollow"&gt;proper subgroup&lt;/a&gt;, which is to say, any subgroup which is not the whole group. If the set is a finite set, the group is called finitely generated. If it is also an &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Abelian_group" rel="nofollow"&gt;abelian group&lt;/a&gt;, it is called a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Finitely_generated_abelian_group" rel="nofollow"&gt;finitely generated abelian group&lt;/a&gt;.&lt;br /&gt;
Line 38: Line 38:
These two example converge when we seek generators for the abstract temperament rather than any particular tuning of it. One way to obtain these is to use the &lt;a class="wiki_link_ext" href="http://mathworld.wolfram.com/InteriorProduct.html" rel="nofollow"&gt;interior product&lt;/a&gt; of a &lt;a class="wiki_link" href="/Wedgies%20and%20Multivals"&gt;wedgie&lt;/a&gt; for a p-limit temperament with the p-limit monzos. A less abstract approach is to define a &lt;a class="wiki_link" href="/transversal"&gt;transversal&lt;/a&gt; for the temperament by giving generators for a just intonation subgroup which when tempered becomes the notes of the temperament.&lt;br /&gt;
These two example converge when we seek generators for the abstract temperament rather than any particular tuning of it. One way to obtain these is to use the &lt;a class="wiki_link_ext" href="http://mathworld.wolfram.com/InteriorProduct.html" rel="nofollow"&gt;interior product&lt;/a&gt; of a &lt;a class="wiki_link" href="/Wedgies%20and%20Multivals"&gt;wedgie&lt;/a&gt; for a p-limit temperament with the p-limit monzos. A less abstract approach is to define a &lt;a class="wiki_link" href="/transversal"&gt;transversal&lt;/a&gt; for the temperament by giving generators for a just intonation subgroup which when tempered becomes the notes of the temperament.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
For example, for &lt;a class="wiki_link" href="/Gamelismic%20clan"&gt;miracle temperament&lt;/a&gt; [2, 15/14] defines a rank two 7-limit subgroup whose &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal interval list&lt;/a&gt; is [2, 15/7]. We might also use [2, 16/15], with a normal interval list [2, 15]. When tempered by miracle, [2, 15/14] and [2, 16/15] lead to the same notes; hence we can use either for a transversal. Either pair may be considered a generating set for the abstract temperament.&lt;/body&gt;&lt;/html&gt;</pre></div>
For example, for &lt;a class="wiki_link" href="/Gamelismic%20clan"&gt;miracle temperament&lt;/a&gt; [2, 15/14] defines a rank two 7-limit subgroup whose &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal interval list&lt;/a&gt; is [2, 15/7]. We might also use [2, 16/15], with a normal interval list [2, 15]. When tempered by miracle, [2, 15/14] and [2, 16/15] lead to the same notes; hence we can use either for a transversal. Either pair may be considered a generating set for the abstract temperament.&lt;br /&gt;
&lt;br /&gt;
Alternatively, using &amp;quot;v&amp;quot; to represent the interior product, we have mir = &amp;lt;&amp;lt;6 -7 -2 -25 -20 15|| for the wedgie of 7-limit miracle. Then the interior product mir v |1 0 0 0&amp;gt;  &lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; &amp;lt;0 -6 7 2|, with 15/14 we get mir v |-1 1 1 -1&amp;gt; &lt;/h1&gt;
&amp;lt;1 1 3 3|, and with 16/15 we get mir v |4 -1 -1 0&amp;gt; = &amp;lt;1 1 3 3|. Unlike the case for just intonation subgroups, the rank two group for the abstract temperament in terms of interior products is already exactly the same.&lt;/body&gt;&lt;/html&gt;</pre></div>