Generalized Tenney norms and Tp interval space: Difference between revisions

Wikispaces>mbattaglia1
**Imported revision 356530054 - Original comment: **
Wikispaces>mbattaglia1
**Imported revision 356530330 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-08-06 11:10:19 UTC</tt>.<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-08-06 11:12:45 UTC</tt>.<br>
: The original revision id was <tt>356530054</tt>.<br>
: The original revision id was <tt>356530330</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 52: Line 52:
Tp norms are thus generalizations of the Tenney norm which continue to weight the primes and prime powers as the Tenney norm does, but for which an arbitrary interval n/d may no longer have a complexity of log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt;(n·d). Furthermore, generalized Tp norms may sometimes differ from the T1 norm in their ranking of intervals by Tp complexity, although the Tp norm of any interval is always bounded by its T1 norm. However, despite these supposed theoretical disadvantages, there can be many indirect implications of using a Tp norm other than T1 which are theoretically justified; additionally, certain Tp norms are worth using as an approximation to T1 for their strong computational advantages. As such, Tp spaces are musically justified enough to merit further study, despite the surface advantages of sticking exclusively to the T1 norm.
Tp norms are thus generalizations of the Tenney norm which continue to weight the primes and prime powers as the Tenney norm does, but for which an arbitrary interval n/d may no longer have a complexity of log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt;(n·d). Furthermore, generalized Tp norms may sometimes differ from the T1 norm in their ranking of intervals by Tp complexity, although the Tp norm of any interval is always bounded by its T1 norm. However, despite these supposed theoretical disadvantages, there can be many indirect implications of using a Tp norm other than T1 which are theoretically justified; additionally, certain Tp norms are worth using as an approximation to T1 for their strong computational advantages. As such, Tp spaces are musically justified enough to merit further study, despite the surface advantages of sticking exclusively to the T1 norm.


=The Tenney-Euclidean Norm (T2 norm)=  
=The Tenney-Euclidean Norm (TE norm, T2 norm)=  
The T2 norm is often called the **Tenney-Euclidean norm**, **TE norm**, or **TE height**, as it has the same relationship with Euclidean geometry that the T1 norm has with taxicab geometry. Applications involving the TE norm tend to be easy to compute, such as the host of TE-related metrics defined for rating temperaments&lt;span style="font-size: 80%; vertical-align: super;"&gt;[[Tenney-Euclidean metrics|(1)]][[Tenney-Euclidean temperament measures|(2)]][[Tenney-Euclidean Tuning|(3)]]&lt;/span&gt;. It approximates the T1 complexity of many intervals, although notably rates 9/1 as more complex than 15/1.
The T2 norm is often called the **Tenney-Euclidean norm**, **TE norm**, or **TE height**, as it has the same relationship with Euclidean geometry that the T1 norm has with taxicab geometry. Applications involving the TE norm tend to be easy to compute, such as the host of TE-related metrics defined for rating temperaments&lt;span style="font-size: 80%; vertical-align: super;"&gt;[[Tenney-Euclidean metrics|(1)]][[Tenney-Euclidean temperament measures|(2)]][[Tenney-Euclidean Tuning|(3)]]&lt;/span&gt;. It approximates the T1 complexity of many intervals, although notably rates 9/1 as more complex than 15/1.


Line 67: Line 67:
[[math]]
[[math]]


In these cases, the relationship between the TE inner product and the ordinary Euclidean inner product becomes apparent; the former is simply a version of the latter which weights the coordinates of each vector.
In these cases, the relationship between the TE inner product and the ordinary Euclidean inner product becomes apparent; the former is simply a version of the latter which weights the coordinates of each vector.</pre></div>
 
=Dual Norms=
Given any Tp norm, we can define a corresponding **dual norm** on the dual space **Tp&lt;span style="font-size: 80%; vertical-align: sub;"&gt;G&lt;/span&gt;*** which satisfies the following identity:
 
[[math]]
||f|| = \text{sup}\left \{\frac{|f(\vec{v})|}{||\vec{v}||}: \vec{v} \in \textbf{Lp}\right \}
[[math]]
 
for all f in **Tp&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;***.
 
In the simplest case where **G** has as its chosen basis only primes and prime powers, and hence || · ||**&lt;span style="font-size: 10px; vertical-align: sub;"&gt;Tp&lt;/span&gt;** is given by
 
[[math]]
\left \| \vec{v} \right \|_{\textbf{Tp}}^\textbf{G} = \left \| \mathbf{W_G} \cdot \vec{v} \right \|_\textbf{p}
[[math]]
 
then the dual norm || f ||**&lt;span style="font-size: 10px; vertical-align: sub;"&gt;Tq*&lt;/span&gt;** is given by
 
[[math]]
\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \left \| f \cdot \mathbf{W}_\mathbf{G}^{-1} \right \|_\textbf{q}
[[math]]
 
where the coefficients p in Tp and q in Tq* satisfy the relationship 1/p + 1/q = 1.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Generalized Tenney Norms and Tp Interval Space&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt; &lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Generalized Tenney Norms and Tp Interval Space&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt; &lt;/h1&gt;
  &lt;!-- ws:start:WikiTextTocRule:20:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#toc0"&gt; &lt;/a&gt;&lt;/div&gt;
  &lt;!-- ws:start:WikiTextTocRule:15:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#toc0"&gt; &lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextTocRule:22: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Basics"&gt;Basics&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Basics"&gt;Basics&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:22 --&gt;&lt;!-- ws:start:WikiTextTocRule:23: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#The Tenney Norm (T1 norm)"&gt;The Tenney Norm (T1 norm)&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#The Tenney Norm (T1 norm)"&gt;The Tenney Norm (T1 norm)&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:23 --&gt;&lt;!-- ws:start:WikiTextTocRule:24: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Generalized Tenney Norms (Tp norms)"&gt;Generalized Tenney Norms (Tp norms)&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Generalized Tenney Norms (Tp norms)"&gt;Generalized Tenney Norms (Tp norms)&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:24 --&gt;&lt;!-- ws:start:WikiTextTocRule:25: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#The Tenney-Euclidean Norm (T2 norm)"&gt;The Tenney-Euclidean Norm (T2 norm)&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;!-- ws:start:WikiTextTocRule:20: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#The Tenney-Euclidean Norm (TE norm, T2 norm)"&gt;The Tenney-Euclidean Norm (TE norm, T2 norm)&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:25 --&gt;&lt;!-- ws:start:WikiTextTocRule:26: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Dual Norms"&gt;Dual Norms&lt;/a&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:20 --&gt;&lt;!-- ws:start:WikiTextTocRule:21: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:26 --&gt;&lt;!-- ws:start:WikiTextTocRule:27: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:21 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:7:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Basics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:7 --&gt;Basics&lt;/h1&gt;
&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Basics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Basics&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
It can be useful to define a notion of the &amp;quot;complexity&amp;quot; of an interval, so that small-integer ratios such as 3/2 are less complex and intervals such as 32805/32768 are more complex. This can be accomplished for any free abelian group of monzos or smonzos by embedding the group in a normed vector space, so that the norm of any interval is taken to be its complexity. Alternatively, if one prefers to think of the monzos as forming a ℤ-module, the vector space can be constructed by simply allowing the existence of monzos with real coordinates, hence defining the module over ℝ instead of ℤ and giving it the added structure of being a vector space. In either case, the resulting space is called &lt;a class="wiki_link" href="/Monzos%20and%20Interval%20Space"&gt;interval space&lt;/a&gt;, with the monzos forming the lattice of vectors with integer coordinates.&lt;br /&gt;
It can be useful to define a notion of the &amp;quot;complexity&amp;quot; of an interval, so that small-integer ratios such as 3/2 are less complex and intervals such as 32805/32768 are more complex. This can be accomplished for any free abelian group of monzos or smonzos by embedding the group in a normed vector space, so that the norm of any interval is taken to be its complexity. Alternatively, if one prefers to think of the monzos as forming a ℤ-module, the vector space can be constructed by simply allowing the existence of monzos with real coordinates, hence defining the module over ℝ instead of ℤ and giving it the added structure of being a vector space. In either case, the resulting space is called &lt;a class="wiki_link" href="/Monzos%20and%20Interval%20Space"&gt;interval space&lt;/a&gt;, with the monzos forming the lattice of vectors with integer coordinates.&lt;br /&gt;
Line 106: Line 82:
The most important and natural norm which arises in this scenario is the &lt;strong&gt;Tenney norm&lt;/strong&gt;, which we will explore below.&lt;br /&gt;
The most important and natural norm which arises in this scenario is the &lt;strong&gt;Tenney norm&lt;/strong&gt;, which we will explore below.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="The Tenney Norm (T1 norm)"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;The Tenney Norm (T1 norm)&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:9:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="The Tenney Norm (T1 norm)"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:9 --&gt;The Tenney Norm (T1 norm)&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
The &lt;strong&gt;Tenney norm&lt;/strong&gt;, also called &lt;strong&gt;Tenney height&lt;/strong&gt;, is the norm such that for any monzo representing an interval a/b, the norm of the interval is log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt;(a·b). For a full-limit monzo |a b c d ...&amp;gt;, this norm can be calculated as |log&lt;span style="font-size: 80%; vertical-align: sub;"&gt;2&lt;/span&gt;(2)·a| + |log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt;(3)·b| + |log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt;(5)·c| + |log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt;(7)·d| + ... . This is a variant of the ordinary L1 norm where each coordinate is weighted in proportion to the log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt; of the prime that it represents. As we will soon see below, generalizations of the Tenney norm that correspond to other weighted Lp norms also exist; these we will call &lt;strong&gt;Tp norms&lt;/strong&gt;, with the Tenney norm being designated the &lt;strong&gt;T1 norm&lt;/strong&gt;.&lt;br /&gt;
The &lt;strong&gt;Tenney norm&lt;/strong&gt;, also called &lt;strong&gt;Tenney height&lt;/strong&gt;, is the norm such that for any monzo representing an interval a/b, the norm of the interval is log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt;(a·b). For a full-limit monzo |a b c d ...&amp;gt;, this norm can be calculated as |log&lt;span style="font-size: 80%; vertical-align: sub;"&gt;2&lt;/span&gt;(2)·a| + |log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt;(3)·b| + |log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt;(5)·c| + |log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt;(7)·d| + ... . This is a variant of the ordinary L1 norm where each coordinate is weighted in proportion to the log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt; of the prime that it represents. As we will soon see below, generalizations of the Tenney norm that correspond to other weighted Lp norms also exist; these we will call &lt;strong&gt;Tp norms&lt;/strong&gt;, with the Tenney norm being designated the &lt;strong&gt;T1 norm&lt;/strong&gt;.&lt;br /&gt;
Line 130: Line 106:
where &lt;strong&gt;W&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt; is a diagonal &amp;quot;weighting matrix&amp;quot; such that the nth entry in the diagonal is the log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt; of the interval represented by the nth coordinate of the monzo. For Tenney norms on these spaces, the unit sphere will look like the ordinary L1 unit sphere, but be dilated a different amount along each axis. Conversely, it is also important to note that that for groups for which the basis does &lt;em&gt;not&lt;/em&gt; only consist of primes or prime powers, the unit sphere of the Tenney norm won't look like a dilated L1 unit sphere at all.&lt;br /&gt;
where &lt;strong&gt;W&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt; is a diagonal &amp;quot;weighting matrix&amp;quot; such that the nth entry in the diagonal is the log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt; of the interval represented by the nth coordinate of the monzo. For Tenney norms on these spaces, the unit sphere will look like the ordinary L1 unit sphere, but be dilated a different amount along each axis. Conversely, it is also important to note that that for groups for which the basis does &lt;em&gt;not&lt;/em&gt; only consist of primes or prime powers, the unit sphere of the Tenney norm won't look like a dilated L1 unit sphere at all.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Generalized Tenney Norms (Tp norms)"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Generalized Tenney Norms (Tp norms)&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:11:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Generalized Tenney Norms (Tp norms)"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:11 --&gt;Generalized Tenney Norms (Tp norms)&lt;/h1&gt;
  A useful generalization of the Tenney norm, called the &lt;strong&gt;Generalized Tenney Norm&lt;/strong&gt;, &lt;strong&gt;Tp norm&lt;/strong&gt;, or &lt;strong&gt;Tp height&lt;/strong&gt;, can be obtained as follows:&lt;br /&gt;
  A useful generalization of the Tenney norm, called the &lt;strong&gt;Generalized Tenney Norm&lt;/strong&gt;, &lt;strong&gt;Tp norm&lt;/strong&gt;, or &lt;strong&gt;Tp height&lt;/strong&gt;, can be obtained as follows:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 144: Line 120:
Tp norms are thus generalizations of the Tenney norm which continue to weight the primes and prime powers as the Tenney norm does, but for which an arbitrary interval n/d may no longer have a complexity of log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt;(n·d). Furthermore, generalized Tp norms may sometimes differ from the T1 norm in their ranking of intervals by Tp complexity, although the Tp norm of any interval is always bounded by its T1 norm. However, despite these supposed theoretical disadvantages, there can be many indirect implications of using a Tp norm other than T1 which are theoretically justified; additionally, certain Tp norms are worth using as an approximation to T1 for their strong computational advantages. As such, Tp spaces are musically justified enough to merit further study, despite the surface advantages of sticking exclusively to the T1 norm.&lt;br /&gt;
Tp norms are thus generalizations of the Tenney norm which continue to weight the primes and prime powers as the Tenney norm does, but for which an arbitrary interval n/d may no longer have a complexity of log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt;(n·d). Furthermore, generalized Tp norms may sometimes differ from the T1 norm in their ranking of intervals by Tp complexity, although the Tp norm of any interval is always bounded by its T1 norm. However, despite these supposed theoretical disadvantages, there can be many indirect implications of using a Tp norm other than T1 which are theoretically justified; additionally, certain Tp norms are worth using as an approximation to T1 for their strong computational advantages. As such, Tp spaces are musically justified enough to merit further study, despite the surface advantages of sticking exclusively to the T1 norm.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="The Tenney-Euclidean Norm (T2 norm)"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;The Tenney-Euclidean Norm (T2 norm)&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:13:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="The Tenney-Euclidean Norm (TE norm, T2 norm)"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:13 --&gt;The Tenney-Euclidean Norm (TE norm, T2 norm)&lt;/h1&gt;
  The T2 norm is often called the &lt;strong&gt;Tenney-Euclidean norm&lt;/strong&gt;, &lt;strong&gt;TE norm&lt;/strong&gt;, or &lt;strong&gt;TE height&lt;/strong&gt;, as it has the same relationship with Euclidean geometry that the T1 norm has with taxicab geometry. Applications involving the TE norm tend to be easy to compute, such as the host of TE-related metrics defined for rating temperaments&lt;span style="font-size: 80%; vertical-align: super;"&gt;&lt;a class="wiki_link" href="/Tenney-Euclidean%20metrics"&gt;(1)&lt;/a&gt;&lt;a class="wiki_link" href="/Tenney-Euclidean%20temperament%20measures"&gt;(2)&lt;/a&gt;&lt;a class="wiki_link" href="/Tenney-Euclidean%20Tuning"&gt;(3)&lt;/a&gt;&lt;/span&gt;. It approximates the T1 complexity of many intervals, although notably rates 9/1 as more complex than 15/1.&lt;br /&gt;
  The T2 norm is often called the &lt;strong&gt;Tenney-Euclidean norm&lt;/strong&gt;, &lt;strong&gt;TE norm&lt;/strong&gt;, or &lt;strong&gt;TE height&lt;/strong&gt;, as it has the same relationship with Euclidean geometry that the T1 norm has with taxicab geometry. Applications involving the TE norm tend to be easy to compute, such as the host of TE-related metrics defined for rating temperaments&lt;span style="font-size: 80%; vertical-align: super;"&gt;&lt;a class="wiki_link" href="/Tenney-Euclidean%20metrics"&gt;(1)&lt;/a&gt;&lt;a class="wiki_link" href="/Tenney-Euclidean%20temperament%20measures"&gt;(2)&lt;/a&gt;&lt;a class="wiki_link" href="/Tenney-Euclidean%20Tuning"&gt;(3)&lt;/a&gt;&lt;/span&gt;. It approximates the T1 complexity of many intervals, although notably rates 9/1 as more complex than 15/1.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Line 161: Line 137:
  --&gt;&lt;script type="math/tex"&gt;\left \langle \vec{v},\vec{w} \right \rangle_\textbf{G} = \vec{v}^T \cdot \mathbf{W}^2_\mathbf{L} \cdot \vec{w}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\left \langle \vec{v},\vec{w} \right \rangle_\textbf{G} = \vec{v}^T \cdot \mathbf{W}^2_\mathbf{L} \cdot \vec{w}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
In these cases, the relationship between the TE inner product and the ordinary Euclidean inner product becomes apparent; the former is simply a version of the latter which weights the coordinates of each vector.&lt;br /&gt;
In these cases, the relationship between the TE inner product and the ordinary Euclidean inner product becomes apparent; the former is simply a version of the latter which weights the coordinates of each vector.&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Dual Norms"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;Dual Norms&lt;/h1&gt;
Given any Tp norm, we can define a corresponding &lt;strong&gt;dual norm&lt;/strong&gt; on the dual space &lt;strong&gt;Tp&lt;span style="font-size: 80%; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;* which satisfies the following identity:&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:5:
[[math]]&amp;lt;br/&amp;gt;
||f|| = \text{sup}\left \{\frac{|f(\vec{v})|}{||\vec{v}||}: \vec{v} \in \textbf{Lp}\right \}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;||f|| = \text{sup}\left \{\frac{|f(\vec{v})|}{||\vec{v}||}: \vec{v} \in \textbf{Lp}\right \}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:5 --&gt;&lt;br /&gt;
&lt;br /&gt;
for all f in &lt;strong&gt;Tp&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;*.&lt;br /&gt;
&lt;br /&gt;
In the simplest case where &lt;strong&gt;G&lt;/strong&gt; has as its chosen basis only primes and prime powers, and hence || · ||&lt;strong&gt;&lt;span style="font-size: 10px; vertical-align: sub;"&gt;Tp&lt;/span&gt;&lt;/strong&gt; is given by&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:6:
[[math]]&amp;lt;br/&amp;gt;
\left \| \vec{v} \right \|_{\textbf{Tp}}^\textbf{G} = \left \| \mathbf{W_G} \cdot \vec{v} \right \|_\textbf{p}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\left \| \vec{v} \right \|_{\textbf{Tp}}^\textbf{G} = \left \| \mathbf{W_G} \cdot \vec{v} \right \|_\textbf{p}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:6 --&gt;&lt;br /&gt;
&lt;br /&gt;
then the dual norm || f ||&lt;strong&gt;&lt;span style="font-size: 10px; vertical-align: sub;"&gt;Tq*&lt;/span&gt;&lt;/strong&gt; is given by&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:7:
[[math]]&amp;lt;br/&amp;gt;
\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \left \| f \cdot \mathbf{W}_\mathbf{G}^{-1} \right \|_\textbf{q}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \left \| f \cdot \mathbf{W}_\mathbf{G}^{-1} \right \|_\textbf{q}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:7 --&gt;&lt;br /&gt;
&lt;br /&gt;
where the coefficients p in Tp and q in Tq* satisfy the relationship 1/p + 1/q = 1.&lt;/body&gt;&lt;/html&gt;</pre></div>