Generalized Tenney norms and Tp interval space: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 509654276 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 511015662 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2014-05-18 13:50:44 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2014-05-24 16:56:21 UTC</tt>.<br>
: The original revision id was <tt>509654276</tt>.<br>
: The original revision id was <tt>511015662</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 9: Line 9:
[[toc]]
[[toc]]


[[image:mathhazard.jpg align="center"]]
[[image:mathhazard.jpg align="left"]]
=Basics=  
=Basics=  


Line 134: Line 134:
&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:27 --&gt;&lt;!-- ws:start:WikiTextTocRule:28: --&gt;&lt;/div&gt;
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:28 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:37:&amp;lt;div style=&amp;quot;text-align: center&amp;quot;&amp;gt;&amp;lt;img src=&amp;quot;/file/view/mathhazard.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt;&amp;lt;/div&amp;gt; --&gt;&lt;div style="text-align: center"&gt;&lt;img src="/file/view/mathhazard.jpg" alt="mathhazard.jpg" title="mathhazard.jpg" /&gt;&lt;/div&gt;&lt;!-- ws:end:WikiTextLocalImageRule:37 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:11:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Basics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:11 --&gt;Basics&lt;/h1&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:37:&amp;lt;img src=&amp;quot;/file/view/mathhazard.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; align=&amp;quot;left&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/mathhazard.jpg" alt="mathhazard.jpg" title="mathhazard.jpg" align="left" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:37 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:11:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Basics"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:11 --&gt;Basics&lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
It can be useful to define a notion of the &amp;quot;complexity&amp;quot; of an interval, so that small-integer ratios such as 3/2 are less complex and intervals such as 32805/32768 are more complex. This can be accomplished for any free abelian group of monzos or smonzos by embedding the group in a normed vector space, so that the norm of any interval is taken to be its complexity. The monzos form a ℤ-module, with coordinates given by integers, and the vector space embedding can be constructed by simply allowing real coordinates, hence defining the module over ℝ instead of ℤ and giving it the structure of a vector space. The resulting space is called &lt;a class="wiki_link" href="/Monzos%20and%20Interval%20Space"&gt;interval space&lt;/a&gt;, with the monzos forming the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Integer_lattice" rel="nofollow"&gt;integer lattice&lt;/a&gt; of vectors with integer coordinates, but where we will allow any vector space norm on ℝⁿ.&lt;br /&gt;
It can be useful to define a notion of the &amp;quot;complexity&amp;quot; of an interval, so that small-integer ratios such as 3/2 are less complex and intervals such as 32805/32768 are more complex. This can be accomplished for any free abelian group of monzos or smonzos by embedding the group in a normed vector space, so that the norm of any interval is taken to be its complexity. The monzos form a ℤ-module, with coordinates given by integers, and the vector space embedding can be constructed by simply allowing real coordinates, hence defining the module over ℝ instead of ℤ and giving it the structure of a vector space. The resulting space is called &lt;a class="wiki_link" href="/Monzos%20and%20Interval%20Space"&gt;interval space&lt;/a&gt;, with the monzos forming the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Integer_lattice" rel="nofollow"&gt;integer lattice&lt;/a&gt; of vectors with integer coordinates, but where we will allow any vector space norm on ℝⁿ.&lt;br /&gt;