Generalized Tenney dual norms and Tp tuning space: Difference between revisions

Wikispaces>mbattaglia1
**Imported revision 356537652 - Original comment: **
Wikispaces>mbattaglia1
**Imported revision 356537958 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-08-06 12:13:27 UTC</tt>.<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-08-06 12:16:10 UTC</tt>.<br>
: The original revision id was <tt>356537652</tt>.<br>
: The original revision id was <tt>356537958</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 47: Line 47:
[[math]]
[[math]]


Note that this is the quotient norm induced on the space **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;***/ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**), where ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**) is the set of vals in the V-map that are restricted away. This result is due to a corollary of the [[@http://www.math.unl.edu/~s-bbockel1/928/node25.html|Hahn-Banach theorem]], which demonstrates that the space **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;*** must be isometrically isomorphic to **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;***/ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**).</pre></div>
Note that this is the quotient norm induced on the space **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;***/ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**), where ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**) is the set of vals in the V-map that are restricted away. This result is due to a corollary of the [[@http://www.math.unl.edu/~s-bbockel1/928/node25.html|Hahn-Banach theorem]], which demonstrates that the dual space M* to any subspace M of a Banach space V must be isometrically isomorphic to the quotient space V*/ker(M), where ker(M) is the set of all f in V* such that f(M) = 0. Since our vector space **Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;** and our subspace is **Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;**, this proves that our dual space **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;*** must be isometrically isomorphic to **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;***/ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**).</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Generalized Tenney Dual Norms and Tp Tuning Space&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Dual Norms"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt;Dual Norms&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Generalized Tenney Dual Norms and Tp Tuning Space&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Dual Norms"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt;Dual Norms&lt;/h1&gt;
Line 95: Line 95:
  --&gt;&lt;script type="math/tex"&gt;\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \inf_{n \in \text{ker}(\mathbf{V_G})} \left \{ \left \| (f-n) \cdot \mathbf{W}_\mathbf{L}^{-1} \right \|_\textbf{Tq*}^\mathbf{L} \right \}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \inf_{n \in \text{ker}(\mathbf{V_G})} \left \{ \left \| (f-n) \cdot \mathbf{W}_\mathbf{L}^{-1} \right \|_\textbf{Tq*}^\mathbf{L} \right \}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Note that this is the quotient norm induced on the space &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt;*/ker(&lt;strong&gt;V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;), where ker(&lt;strong&gt;V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;) is the set of vals in the V-map that are restricted away. This result is due to a corollary of the &lt;a class="wiki_link_ext" href="http://www.math.unl.edu/~s-bbockel1/928/node25.html" rel="nofollow" target="_blank"&gt;Hahn-Banach theorem&lt;/a&gt;, which demonstrates that the space &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;* must be isometrically isomorphic to &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt;*/ker(&lt;strong&gt;V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;).&lt;/body&gt;&lt;/html&gt;</pre></div>
Note that this is the quotient norm induced on the space &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt;*/ker(&lt;strong&gt;V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;), where ker(&lt;strong&gt;V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;) is the set of vals in the V-map that are restricted away. This result is due to a corollary of the &lt;a class="wiki_link_ext" href="http://www.math.unl.edu/~s-bbockel1/928/node25.html" rel="nofollow" target="_blank"&gt;Hahn-Banach theorem&lt;/a&gt;, which demonstrates that the dual space M* to any subspace M of a Banach space V must be isometrically isomorphic to the quotient space V*/ker(M), where ker(M) is the set of all f in V* such that f(M) = 0. Since our vector space &lt;strong&gt;Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt; and our subspace is &lt;strong&gt;Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;, this proves that our dual space &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;* must be isometrically isomorphic to &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt;*/ker(&lt;strong&gt;V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;).&lt;/body&gt;&lt;/html&gt;</pre></div>