Generalized Tenney dual norms and Tp tuning space: Difference between revisions

Wikispaces>mbattaglia1
**Imported revision 356537958 - Original comment: **
Wikispaces>mbattaglia1
**Imported revision 356537966 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-08-06 12:16:10 UTC</tt>.<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-08-06 12:16:16 UTC</tt>.<br>
: The original revision id was <tt>356537958</tt>.<br>
: The original revision id was <tt>356537966</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 10: Line 10:


[[math]]
[[math]]
||f||_\mathbf{Tq*} = \text{sup}\left \{\frac{|f(\vec{v})|}{||\vec{v}||_\mathbf{Tp}}: \vec{v} \in \textbf{Lp}\right \}
||f||_\mathbf{Tq*} = \text{sup}\left \{\frac{|f(\vec{v})|}{||\vec{v}||_\mathbf{Tp}}: \vec{v} \in \textbf{Lp}\right \}
[[math]]
[[math]]


Line 19: Line 19:


[[math]]
[[math]]
\left \| \vec{v} \right \|_{\textbf{Tp}}^\textbf{G} = \left \| \mathbf{W_G} \cdot \vec{v} \right \|_\textbf{p}
\left \| \vec{v} \right \|_{\textbf{Tp}}^\textbf{G} = \left \| \mathbf{W_G} \cdot \vec{v} \right \|_\textbf{p}
[[math]]
[[math]]


Line 25: Line 25:


[[math]]
[[math]]
\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \left \| f \cdot \mathbf{W}_\mathbf{G}^{-1} \right \|_\textbf{q}
\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \left \| f \cdot \mathbf{W}_\mathbf{G}^{-1} \right \|_\textbf{q}
[[math]]
[[math]]


Line 38: Line 38:


[[math]]
[[math]]
\left \| \vec{v} \right \|_{\textbf{T1}}^\textbf{G} = \left \| \mathbf{W_L} \cdot \mathbf{V_\textbf{G}} \cdot \vec{v} \right \|_\textbf{1}
\left \| \vec{v} \right \|_{\textbf{T1}}^\textbf{G} = \left \| \mathbf{W_L} \cdot \mathbf{V_\textbf{G}} \cdot \vec{v} \right \|_\textbf{1}
[[math]]
[[math]]


Line 44: Line 44:


[[math]]
[[math]]
\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \inf_{n \in \text{ker}(\mathbf{V_G})} \left \{ \left \| (f-n) \cdot \mathbf{W}_\mathbf{L}^{-1} \right \|_\textbf{Tq*}^\mathbf{L} \right \}
\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \inf_{n \in \text{ker}(\mathbf{V_G})} \left \{ \left \| (f-n) \cdot \mathbf{W}_\mathbf{L}^{-1} \right \|_\textbf{Tq*}^\mathbf{L} \right \}
[[math]]
[[math]]


Note that this is the quotient norm induced on the space **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;***/ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**), where ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**) is the set of vals in the V-map that are restricted away. This result is due to a corollary of the [[@http://www.math.unl.edu/~s-bbockel1/928/node25.html|Hahn-Banach theorem]], which demonstrates that the dual space M* to any subspace M of a Banach space V must be isometrically isomorphic to the quotient space V*/ker(M), where ker(M) is the set of all f in V* such that f(M) = 0. Since our vector space **Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;** and our subspace is **Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;**, this proves that our dual space **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;*** must be isometrically isomorphic to **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;***/ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**).</pre></div>
Note that this is the quotient norm induced on the space **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;***/ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**), where ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**) is the set of vals in the V-map that are restricted away. This result is due to a corollary of the [[@http://www.math.unl.edu/~s-bbockel1/928/node25.html|Hahn-Banach theorem]], which demonstrates that the dual space M* to any subspace M of a Banach space V must be isometrically isomorphic to the quotient space V*/ker(M), where ker(M) is the set of all f in V* such that f(M) = 0. Since our vector space **Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;** and our subspace is **Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;**, this proves that our dual space **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;*** must be isometrically isomorphic to **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;***/ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**). </pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Generalized Tenney Dual Norms and Tp Tuning Space&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Dual Norms"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt;Dual Norms&lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Generalized Tenney Dual Norms and Tp Tuning Space&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Dual Norms"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt;Dual Norms&lt;/h1&gt;
Line 54: Line 54:
&lt;!-- ws:start:WikiTextMathRule:0:
&lt;!-- ws:start:WikiTextMathRule:0:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
||f||_\mathbf{Tq*} = \text{sup}\left \{\frac{|f(\vec{v})|}{||\vec{v}||_\mathbf{Tp}}: \vec{v} \in \textbf{Lp}\right \}&amp;lt;br/&amp;gt;[[math]]
||f||_\mathbf{Tq*} = \text{sup}\left \{\frac{|f(\vec{v})|}{||\vec{v}||_\mathbf{Tp}}: \vec{v} \in \textbf{Lp}\right \}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;||f||_\mathbf{Tq*} = \text{sup}\left \{\frac{|f(\vec{v})|}{||\vec{v}||_\mathbf{Tp}}: \vec{v} \in \textbf{Lp}\right \}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt; ||f||_\mathbf{Tq*} = \text{sup}\left \{\frac{|f(\vec{v})|}{||\vec{v}||_\mathbf{Tp}}: \vec{v} \in \textbf{Lp}\right \}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
for all f in &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;*. This normed space, for which the group of vals on &lt;strong&gt;G&lt;/strong&gt; comprise the lattice of covectors with integer coefficients, is called &lt;strong&gt;Tq* Tuning Space.&lt;/strong&gt;&lt;br /&gt;
for all f in &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;*. This normed space, for which the group of vals on &lt;strong&gt;G&lt;/strong&gt; comprise the lattice of covectors with integer coefficients, is called &lt;strong&gt;Tq* Tuning Space.&lt;/strong&gt;&lt;br /&gt;
Line 64: Line 64:
&lt;!-- ws:start:WikiTextMathRule:1:
&lt;!-- ws:start:WikiTextMathRule:1:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
\left \| \vec{v} \right \|_{\textbf{Tp}}^\textbf{G} = \left \| \mathbf{W_G} \cdot \vec{v} \right \|_\textbf{p}&amp;lt;br/&amp;gt;[[math]]
\left \| \vec{v} \right \|_{\textbf{Tp}}^\textbf{G} = \left \| \mathbf{W_G} \cdot \vec{v} \right \|_\textbf{p}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;\left \| \vec{v} \right \|_{\textbf{Tp}}^\textbf{G} = \left \| \mathbf{W_G} \cdot \vec{v} \right \|_\textbf{p}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:1 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt; \left \| \vec{v} \right \|_{\textbf{Tp}}^\textbf{G} = \left \| \mathbf{W_G} \cdot \vec{v} \right \|_\textbf{p}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:1 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
for diagonal weighting matrix &lt;strong&gt;W&lt;span style="font-size: 80%; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;. Then the dual norm || · ||&lt;strong&gt;&lt;span style="font-size: 10px; vertical-align: sub;"&gt;Tq*&lt;/span&gt;&lt;/strong&gt; on &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;* is given for f in &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;* by&lt;br /&gt;
for diagonal weighting matrix &lt;strong&gt;W&lt;span style="font-size: 80%; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;. Then the dual norm || · ||&lt;strong&gt;&lt;span style="font-size: 10px; vertical-align: sub;"&gt;Tq*&lt;/span&gt;&lt;/strong&gt; on &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;* is given for f in &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;* by&lt;br /&gt;
Line 71: Line 71:
&lt;!-- ws:start:WikiTextMathRule:2:
&lt;!-- ws:start:WikiTextMathRule:2:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \left \| f \cdot \mathbf{W}_\mathbf{G}^{-1} \right \|_\textbf{q}&amp;lt;br/&amp;gt;[[math]]
\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \left \| f \cdot \mathbf{W}_\mathbf{G}^{-1} \right \|_\textbf{q}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \left \| f \cdot \mathbf{W}_\mathbf{G}^{-1} \right \|_\textbf{q}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:2 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt; \left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \left \| f \cdot \mathbf{W}_\mathbf{G}^{-1} \right \|_\textbf{q}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:2 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
where the coefficients p in Tp and q in Tq* satisfy the relationship 1/p + 1/q = 1.&lt;br /&gt;
where the coefficients p in Tp and q in Tq* satisfy the relationship 1/p + 1/q = 1.&lt;br /&gt;
Line 85: Line 85:
&lt;!-- ws:start:WikiTextMathRule:3:
&lt;!-- ws:start:WikiTextMathRule:3:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
\left \| \vec{v} \right \|_{\textbf{T1}}^\textbf{G} = \left \| \mathbf{W_L} \cdot \mathbf{V_\textbf{G}} \cdot \vec{v} \right \|_\textbf{1}&amp;lt;br/&amp;gt;[[math]]
\left \| \vec{v} \right \|_{\textbf{T1}}^\textbf{G} = \left \| \mathbf{W_L} \cdot \mathbf{V_\textbf{G}} \cdot \vec{v} \right \|_\textbf{1}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;\left \| \vec{v} \right \|_{\textbf{T1}}^\textbf{G} = \left \| \mathbf{W_L} \cdot \mathbf{V_\textbf{G}} \cdot \vec{v} \right \|_\textbf{1}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:3 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt; \left \| \vec{v} \right \|_{\textbf{T1}}^\textbf{G} = \left \| \mathbf{W_L} \cdot \mathbf{V_\textbf{G}} \cdot \vec{v} \right \|_\textbf{1}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:3 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
for a &lt;a class="wiki_link" href="/Subgroup%20Mapping%20Matrices%20%28V-maps%29"&gt;V-map&lt;/a&gt; &lt;strong&gt;V&lt;span style="font-size: 80%; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt; representing &lt;strong&gt;G&lt;/strong&gt; in some full-limit &lt;strong&gt;L&lt;/strong&gt; and a diagonal weighting matrix &lt;strong&gt;W&lt;span style="font-size: 10px; vertical-align: sub;"&gt;L&lt;/span&gt;&lt;/strong&gt; for &lt;strong&gt;L&lt;/strong&gt;. Then if &lt;strong&gt;Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt; represents the full-limit interval space that &lt;strong&gt;G&lt;/strong&gt; is embedded in, and &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt;* is the dual space, the dual norm || · ||&lt;strong&gt;&lt;span style="font-size: 10px; vertical-align: sub;"&gt;Tq &lt;/span&gt;&lt;/strong&gt;on &lt;strong&gt;Tq&lt;span style="font-size: 80%; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;* is given by&lt;br /&gt;
for a &lt;a class="wiki_link" href="/Subgroup%20Mapping%20Matrices%20%28V-maps%29"&gt;V-map&lt;/a&gt; &lt;strong&gt;V&lt;span style="font-size: 80%; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt; representing &lt;strong&gt;G&lt;/strong&gt; in some full-limit &lt;strong&gt;L&lt;/strong&gt; and a diagonal weighting matrix &lt;strong&gt;W&lt;span style="font-size: 10px; vertical-align: sub;"&gt;L&lt;/span&gt;&lt;/strong&gt; for &lt;strong&gt;L&lt;/strong&gt;. Then if &lt;strong&gt;Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt; represents the full-limit interval space that &lt;strong&gt;G&lt;/strong&gt; is embedded in, and &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt;* is the dual space, the dual norm || · ||&lt;strong&gt;&lt;span style="font-size: 10px; vertical-align: sub;"&gt;Tq &lt;/span&gt;&lt;/strong&gt;on &lt;strong&gt;Tq&lt;span style="font-size: 80%; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;* is given by&lt;br /&gt;
Line 92: Line 92:
&lt;!-- ws:start:WikiTextMathRule:4:
&lt;!-- ws:start:WikiTextMathRule:4:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \inf_{n \in \text{ker}(\mathbf{V_G})} \left \{ \left \| (f-n) \cdot \mathbf{W}_\mathbf{L}^{-1} \right \|_\textbf{Tq*}^\mathbf{L} \right \}&amp;lt;br/&amp;gt;[[math]]
\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \inf_{n \in \text{ker}(\mathbf{V_G})} \left \{ \left \| (f-n) \cdot \mathbf{W}_\mathbf{L}^{-1} \right \|_\textbf{Tq*}^\mathbf{L} \right \}&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;\left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \inf_{n \in \text{ker}(\mathbf{V_G})} \left \{ \left \| (f-n) \cdot \mathbf{W}_\mathbf{L}^{-1} \right \|_\textbf{Tq*}^\mathbf{L} \right \}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt; \left \|f \right \|_{\textbf{Tq*}}^\textbf{G} = \inf_{n \in \text{ker}(\mathbf{V_G})} \left \{ \left \| (f-n) \cdot \mathbf{W}_\mathbf{L}^{-1} \right \|_\textbf{Tq*}^\mathbf{L} \right \}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Note that this is the quotient norm induced on the space &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt;*/ker(&lt;strong&gt;V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;), where ker(&lt;strong&gt;V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;) is the set of vals in the V-map that are restricted away. This result is due to a corollary of the &lt;a class="wiki_link_ext" href="http://www.math.unl.edu/~s-bbockel1/928/node25.html" rel="nofollow" target="_blank"&gt;Hahn-Banach theorem&lt;/a&gt;, which demonstrates that the dual space M* to any subspace M of a Banach space V must be isometrically isomorphic to the quotient space V*/ker(M), where ker(M) is the set of all f in V* such that f(M) = 0. Since our vector space &lt;strong&gt;Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt; and our subspace is &lt;strong&gt;Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;, this proves that our dual space &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;* must be isometrically isomorphic to &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt;*/ker(&lt;strong&gt;V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;).&lt;/body&gt;&lt;/html&gt;</pre></div>
Note that this is the quotient norm induced on the space &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt;*/ker(&lt;strong&gt;V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;), where ker(&lt;strong&gt;V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;) is the set of vals in the V-map that are restricted away. This result is due to a corollary of the &lt;a class="wiki_link_ext" href="http://www.math.unl.edu/~s-bbockel1/928/node25.html" rel="nofollow" target="_blank"&gt;Hahn-Banach theorem&lt;/a&gt;, which demonstrates that the dual space M* to any subspace M of a Banach space V must be isometrically isomorphic to the quotient space V*/ker(M), where ker(M) is the set of all f in V* such that f(M) = 0. Since our vector space &lt;strong&gt;Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt; and our subspace is &lt;strong&gt;Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;, this proves that our dual space &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;* must be isometrically isomorphic to &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;&lt;/strong&gt;*/ker(&lt;strong&gt;V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt;).&lt;/body&gt;&lt;/html&gt;</pre></div>