Generalized Tenney dual norms and Tp tuning space: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 515964958 - Original comment: **
Wikispaces>clumma
**Imported revision 535152546 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2014-07-10 12:53:36 UTC</tt>.<br>
: This revision was by author [[User:clumma|clumma]] and made on <tt>2014-12-14 22:34:10 UTC</tt>.<br>
: The original revision id was <tt>515964958</tt>.<br>
: The original revision id was <tt>535152546</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Dual Norms=  
[[image:mathhazard.jpg align="left"]]
=Dual Norms=  
Given any [[Generalized Tenney Norms and Tp Interval Space|Tp norm]] on an interval space **Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;** associated with a group **G**, we can define a corresponding **dual Tq* norm** on the dual space **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;*** which satisfies the following identity:
Given any [[Generalized Tenney Norms and Tp Interval Space|Tp norm]] on an interval space **Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;** associated with a group **G**, we can define a corresponding **dual Tq* norm** on the dual space **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;*** which satisfies the following identity:


Line 53: Line 51:
Note that this is the quotient norm induced on the space **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;***/ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**), where ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**) is the set of vals in the V-map that are restricted away. This result is due to a corollary of the [[@http://www.math.unl.edu/~s-bbockel1/928/node25.html|Hahn-Banach theorem]], which demonstrates that the dual space M* to any subspace M of a Banach space V must be isometrically isomorphic to the quotient space V*/ker(M), where ker(M) is the set of all f in V* such that f(M) = 0. Since our vector space **Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;** and our subspace is **Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;**, this proves that our dual space **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;*** must be isometrically isomorphic to **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;***/ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**).</pre></div>
Note that this is the quotient norm induced on the space **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;***/ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**), where ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**) is the set of vals in the V-map that are restricted away. This result is due to a corollary of the [[@http://www.math.unl.edu/~s-bbockel1/928/node25.html|Hahn-Banach theorem]], which demonstrates that the dual space M* to any subspace M of a Banach space V must be isometrically isomorphic to the quotient space V*/ker(M), where ker(M) is the set of all f in V* such that f(M) = 0. Since our vector space **Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;** and our subspace is **Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;**, this proves that our dual space **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;*** must be isometrically isomorphic to **Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;L&lt;/span&gt;***/ker(**V&lt;span style="font-size: 10px; vertical-align: sub;"&gt;G&lt;/span&gt;**).</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Generalized Tenney Dual Norms and Tp Tuning Space&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Generalized Tenney Dual Norms and Tp Tuning Space&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Dual Norms"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt;Dual Norms&lt;/h1&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:11:&amp;lt;img src=&amp;quot;/file/view/mathhazard.jpg&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; align=&amp;quot;left&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/mathhazard.jpg" alt="mathhazard.jpg" title="mathhazard.jpg" align="left" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:11 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Dual Norms"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt;Dual Norms&lt;/h1&gt;
  Given any &lt;a class="wiki_link" href="/Generalized%20Tenney%20Norms%20and%20Tp%20Interval%20Space"&gt;Tp norm&lt;/a&gt; on an interval space &lt;strong&gt;Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt; associated with a group &lt;strong&gt;G&lt;/strong&gt;, we can define a corresponding &lt;strong&gt;dual Tq* norm&lt;/strong&gt; on the dual space &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;* which satisfies the following identity:&lt;br /&gt;
  Given any &lt;a class="wiki_link" href="/Generalized%20Tenney%20Norms%20and%20Tp%20Interval%20Space"&gt;Tp norm&lt;/a&gt; on an interval space &lt;strong&gt;Tp&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt; associated with a group &lt;strong&gt;G&lt;/strong&gt;, we can define a corresponding &lt;strong&gt;dual Tq* norm&lt;/strong&gt; on the dual space &lt;strong&gt;Tq&lt;span style="font-size: 10px; vertical-align: super;"&gt;G&lt;/span&gt;&lt;/strong&gt;* which satisfies the following identity:&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;