The Riemann zeta function and tuning: Difference between revisions

ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
Line 66: Line 66:
<math>\displaystyle \Upsilon(z) = -\gamma z - \ln z + \sum_{k=1}^\infty \frac{z}{k} - \ln\left(1 + \frac{z}{k}\right)</math>
<math>\displaystyle \Upsilon(z) = -\gamma z - \ln z + \sum_{k=1}^\infty \frac{z}{k} - \ln\left(1 + \frac{z}{k}\right)</math>


where &gamma is the [[Wikipedia:Euler–Mascheroni constant|Euler&ndash;Mascheroni constant]]. We now may define the Riemann-Siegel theta function as
where &gamma; is the [[Wikipedia:Euler–Mascheroni constant|Euler&ndash;Mascheroni constant]]. We now may define the Riemann-Siegel theta function as


<math>\theta(z) = (\Upsilon((1 + 2 i z)/4) - \Upsilon((1 - 2 i z)/4))/(2 i) - \ln(\pi) z/2</math>
<math>\theta(z) = (\Upsilon((1 + 2 i z)/4) - \Upsilon((1 - 2 i z)/4))/(2 i) - \ln(\pi) z/2</math>