The Riemann zeta function and tuning: Difference between revisions
ArrowHead294 (talk | contribs) mNo edit summary |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 53: | Line 53: | ||
=== Into the critical strip === | === Into the critical strip === | ||
So long as {{nowrap|''s'' ≥ 1}}, the absolute value of the zeta function can be seen as a relative error measurement. However, the rationale for that view of things departs when {{nowrap|''s'' < 1}}, particularly in the [http://mathworld.wolfram.com/CriticalStrip.html critical strip], when {{nowrap|0 < ''s'' < 1}}. As s approaches the value {{nowrap|''s'' {{=}} {{frac|1|2}}}} of the [http://mathworld.wolfram.com/CriticalLine.html critical line], the information content, so to speak, of the zeta function concerning higher primes increases and it behaves increasingly like a badness measure (or more correctly, since we have inverted it, like a goodness measure.) The quasi-symmetric [https://planetmath.org/encyclopedia/FunctionalEquationOfTheRiemannZetaFunction.html functional equation] of the zeta function tells us that past the critical line the information content starts to decrease again, with {{nowrap|1 − ''s''}} and ''s'' having the same information content. Hence it is the zeta function between {{nowrap|''s'' {{=}} {{ | So long as {{nowrap|''s'' ≥ 1}}, the absolute value of the zeta function can be seen as a relative error measurement. However, the rationale for that view of things departs when {{nowrap|''s'' < 1}}, particularly in the [http://mathworld.wolfram.com/CriticalStrip.html critical strip], when {{nowrap|0 < ''s'' < 1}}. As s approaches the value {{nowrap|''s'' {{=}} {{frac|1|2}}}} of the [http://mathworld.wolfram.com/CriticalLine.html critical line], the information content, so to speak, of the zeta function concerning higher primes increases and it behaves increasingly like a badness measure (or more correctly, since we have inverted it, like a goodness measure.) The quasi-symmetric [https://planetmath.org/encyclopedia/FunctionalEquationOfTheRiemannZetaFunction.html functional equation] of the zeta function tells us that past the critical line the information content starts to decrease again, with {{nowrap|1 − ''s''}} and ''s'' having the same information content. Hence it is the zeta function between {{nowrap|''s'' {{=}} {{frac|1|2}}}} and {{nowrap|''s'' {{=}} 1}}, and especially the zeta function along the critical line {{nowrap|''s'' {{=}} {{frac|1|2}}}}, which is of the most interest. | ||
As {{nowrap|''s'' > 1}} gets larger, the Dirichlet series for the zeta function is increasingly dominated by the 2 term, getting ever closer to simply {{nowrap|1 + 2<sup>−''z''</sup>}}, which approaches 1 as {{nowrap|''s'' {{=}} Re(''z'')}} becomes larger. When {{nowrap|''s'' >> 1}} and ''x'' is an integer, the real part of zeta is approximately {{nowrap|1 + 2<sup>−''s''</sup>}}, and the imaginary part is approximately zero; that is, zeta is approximately real. Starting from {{nowrap|''s'' {{=}} +∞}} with ''x'' an integer, we can trace a line back towards the critical strip on which zeta is real. Since when {{nowrap|''s'' >> 1}} the derivative is approximately {{nowrap|−ln(2) / 2<sup>''s''</sup>}}, it is negative on this line of real values for zeta, meaning that the real value for zeta increases as ''s'' decreases. The zeta function approaches 1 uniformly as ''s'' increases to infinity, so as ''s'' decreases, the real-valued zeta function along this line of real values continues to increase though all real values from 1 to infinity monotonically. When it crosses the critical line where {{nowrap|''s'' {{=}} {{frac|1|2}}}}, it produces a real value of zeta on the critical line. Points on the critical line where {{nowrap|ζ({{frac|1|2}} + ''ig'')}} are real are called "Gram points", after [[Wikipedia:Jørgen Pedersen Gram|Jørgen Pedersen Gram]]. We thus have associated pure-octave edos, where ''x'' is an integer, to a value near to the pure octave, at the special sorts of Gram points which corresponds to edos. | As {{nowrap|''s'' > 1}} gets larger, the Dirichlet series for the zeta function is increasingly dominated by the 2 term, getting ever closer to simply {{nowrap|1 + 2<sup>−''z''</sup>}}, which approaches 1 as {{nowrap|''s'' {{=}} Re(''z'')}} becomes larger. When {{nowrap|''s'' >> 1}} and ''x'' is an integer, the real part of zeta is approximately {{nowrap|1 + 2<sup>−''s''</sup>}}, and the imaginary part is approximately zero; that is, zeta is approximately real. Starting from {{nowrap|''s'' {{=}} +∞}} with ''x'' an integer, we can trace a line back towards the critical strip on which zeta is real. Since when {{nowrap|''s'' >> 1}} the derivative is approximately {{nowrap|−ln(2) / 2<sup>''s''</sup>}}, it is negative on this line of real values for zeta, meaning that the real value for zeta increases as ''s'' decreases. The zeta function approaches 1 uniformly as ''s'' increases to infinity, so as ''s'' decreases, the real-valued zeta function along this line of real values continues to increase though all real values from 1 to infinity monotonically. When it crosses the critical line where {{nowrap|''s'' {{=}} {{frac|1|2}}}}, it produces a real value of zeta on the critical line. Points on the critical line where {{nowrap|ζ({{frac|1|2}} + ''ig'')}} are real are called "Gram points", after [[Wikipedia:Jørgen Pedersen Gram|Jørgen Pedersen Gram]]. We thus have associated pure-octave edos, where ''x'' is an integer, to a value near to the pure octave, at the special sorts of Gram points which corresponds to edos. | ||
Line 70: | Line 70: | ||
<math>\theta(z) = (\Upsilon((1 + 2 i z)/4) - \Upsilon((1 - 2 i z)/4))/(2 i) - \ln(\pi) z/2</math> | <math>\theta(z) = (\Upsilon((1 + 2 i z)/4) - \Upsilon((1 - 2 i z)/4))/(2 i) - \ln(\pi) z/2</math> | ||
Another approach is to substitute {{nowrap|''z'' {{=}} {{ | Another approach is to substitute {{nowrap|''z'' {{=}} {{frac|1 + 2''it''|4}}}} into the series for Log Gamma and take the imaginary part, this yields | ||
<math>\displaystyle \theta(t) = -\frac{\gamma + \log \pi}{2}t - \arctan 2t | <math>\displaystyle \theta(t) = -\frac{\gamma + \log \pi}{2}t - \arctan 2t | ||
Line 178: | Line 178: | ||
\left| \zeta(s) \right|^2 = \sum_{n,d} \frac{\cos\left(t \ln\left({\tfrac{n}{d}}\right)\right)}{(nd)^{\sigma}}</math> | \left| \zeta(s) \right|^2 = \sum_{n,d} \frac{\cos\left(t \ln\left({\tfrac{n}{d}}\right)\right)}{(nd)^{\sigma}}</math> | ||
Finally, by making the mysterious substitution {{nowrap|''t'' {{=}} {{ | Finally, by making the mysterious substitution {{nowrap|''t'' {{=}} {{frac|2π|ln(2)}} ''x''}}, the musical implications of the above will start to reveal themselves: | ||
<math> \displaystyle | <math> \displaystyle |