Eigenmonzo basis: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 230116456 - Original comment: **
 
Wikispaces>genewardsmith
**Imported revision 230116832 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-05-19 16:11:33 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-05-19 16:12:39 UTC</tt>.<br>
: The original revision id was <tt>230116456</tt>.<br>
: The original revision id was <tt>230116832</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Given a [[Abstract regular temperament|regular temperament]] tuning T, an [[Fractional monzos|eigenmonzo]] is a rational interval q such that T(q) = q; that is, T tunes q justly. The eigenmonzos of T define a [[just intonation subgoup]], the eigenmonzo subgroup.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Given a [[Abstract regular temperament|regular temperament]] tuning T, an [[Fractional monzos|eigenmonzo]] is a rational interval q such that T(q) = q; that is, T tunes q justly. The eigenmonzos of T define a [[Just intonation subgroups|just intonation subgoup]], the eigenmonzo subgroup.


One sort of example is provided by any equal division of the octave, where 2 (the octave) is always an eigenmonzo and the group {2^n} of powers of 2 is the eigenmonzo subgroup. The idea is most useful in connection to the [[Targent tunings|minimax tunings]] of regular temperaments, where for a rank r regular temperament, the eigenmonzo subgroup is a rank r JI subgroup whose generators, together with generators for the commas of the subgroup, can be used to define the projection map of the minimax tuning and hence define the tuning.</pre></div>
One sort of example is provided by any equal division of the octave, where 2 (the octave) is always an eigenmonzo and the group {2^n} of powers of 2 is the eigenmonzo subgroup. The idea is most useful in connection to the [[Targent tuning|minimax tunings]] of regular temperaments, where for a rank r regular temperament, the eigenmonzo subgroup is a rank r JI subgroup whose generators, together with generators for the commas of the subgroup, can be used to define the projection map of the minimax tuning and hence define the tuning.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Eigenmonzo subgroup&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Given a &lt;a class="wiki_link" href="/Abstract%20regular%20temperament"&gt;regular temperament&lt;/a&gt; tuning T, an &lt;a class="wiki_link" href="/Fractional%20monzos"&gt;eigenmonzo&lt;/a&gt; is a rational interval q such that T(q) = q; that is, T tunes q justly. The eigenmonzos of T define a &lt;a class="wiki_link" href="/just%20intonation%20subgoup"&gt;just intonation subgoup&lt;/a&gt;, the eigenmonzo subgroup.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Eigenmonzo subgroup&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Given a &lt;a class="wiki_link" href="/Abstract%20regular%20temperament"&gt;regular temperament&lt;/a&gt; tuning T, an &lt;a class="wiki_link" href="/Fractional%20monzos"&gt;eigenmonzo&lt;/a&gt; is a rational interval q such that T(q) = q; that is, T tunes q justly. The eigenmonzos of T define a &lt;a class="wiki_link" href="/Just%20intonation%20subgroups"&gt;just intonation subgoup&lt;/a&gt;, the eigenmonzo subgroup.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
One sort of example is provided by any equal division of the octave, where 2 (the octave) is always an eigenmonzo and the group {2^n} of powers of 2 is the eigenmonzo subgroup. The idea is most useful in connection to the &lt;a class="wiki_link" href="/Targent%20tunings"&gt;minimax tunings&lt;/a&gt; of regular temperaments, where for a rank r regular temperament, the eigenmonzo subgroup is a rank r JI subgroup whose generators, together with generators for the commas of the subgroup, can be used to define the projection map of the minimax tuning and hence define the tuning.&lt;/body&gt;&lt;/html&gt;</pre></div>
One sort of example is provided by any equal division of the octave, where 2 (the octave) is always an eigenmonzo and the group {2^n} of powers of 2 is the eigenmonzo subgroup. The idea is most useful in connection to the &lt;a class="wiki_link" href="/Targent%20tuning"&gt;minimax tunings&lt;/a&gt; of regular temperaments, where for a rank r regular temperament, the eigenmonzo subgroup is a rank r JI subgroup whose generators, together with generators for the commas of the subgroup, can be used to define the projection map of the minimax tuning and hence define the tuning.&lt;/body&gt;&lt;/html&gt;</pre></div>