User:Moremajorthanmajor/Ed9/4: Difference between revisions

Wikispaces>JosephRuhf
**Imported revision 602599440 - Original comment: **
Wikispaces>JosephRuhf
**Imported revision 602599932 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-12-20 16:13:18 UTC</tt>.<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-12-20 16:21:51 UTC</tt>.<br>
: The original revision id was <tt>602599440</tt>.<br>
: The original revision id was <tt>602599932</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 11: Line 11:
Division of e. g. the 9:4 into equal parts can be conceived of as to directly use this interval as an equivalence, or not. The question of [[equivalence]] has not even been posed yet. The utility of 9:4 or another ninth as a base though, is apparent by being the standard replacement for the root in jazz piano voicings. Also, as a ninth is the double of a fifth, the fifth of normal root position triads will become the common suspension (5-4 or 5-6) of a ninth-based system. However, thirds and sixths are no longer inverses, and thus an [[Pseudo-traditional harmonic functions of octatonic scale degrees|octatonic scale]] (i. e. any of those of the proper Napoli temperament family which are generated by a third or a fourth optionally with a period equivalent to six macrotones, in particular ones at least as wide as 5 degrees of [[56edo]]) takes 1-3-6 as the root position of its regular triad. Many, though not all, of these scales have a pseudo (false) octave, with various degrees of accuracy.
Division of e. g. the 9:4 into equal parts can be conceived of as to directly use this interval as an equivalence, or not. The question of [[equivalence]] has not even been posed yet. The utility of 9:4 or another ninth as a base though, is apparent by being the standard replacement for the root in jazz piano voicings. Also, as a ninth is the double of a fifth, the fifth of normal root position triads will become the common suspension (5-4 or 5-6) of a ninth-based system. However, thirds and sixths are no longer inverses, and thus an [[Pseudo-traditional harmonic functions of octatonic scale degrees|octatonic scale]] (i. e. any of those of the proper Napoli temperament family which are generated by a third or a fourth optionally with a period equivalent to six macrotones, in particular ones at least as wide as 5 degrees of [[56edo]]) takes 1-3-6 as the root position of its regular triad. Many, though not all, of these scales have a pseudo (false) octave, with various degrees of accuracy.


Incidentally, one way to treat 9/4 as an equivalence is the use of the 4:5:6:7:[8]:(9) chord as the fundamental complete sonority in a very similar way to the 4:5:6:(8) chord in meantone. Whereas in meantone it takes four 3/2 to get to 5/1, here it takes nine 5/4 to get to the same place as thirteen 7/6 (tempering out the comma |5 -13 9 -13&gt;) or three 7/6 to get between 6/5 and the period of 3/2 (tempering out the comma 1728/1715). So, doing this yields 8 or 10, 12 or 14, and 22 note 2MOS. While the notes are rather farther apart, the scheme is uncannily similar to certain versions of the regularly tempered approximate [[A shruti list|shrutis]]. "Macroshrutis" might be a practically perfect term for it if it hasn't been named yet.
Incidentally, one way to treat 9/4 as an equivalence is the use of the 4:5:6:7:[8]:(9) chord as the fundamental complete sonority in a very similar way to the 4:5:6:(8) chord in meantone. Whereas in meantone it takes four 3/2 to get to 5/1, here it takes nine 5/4 to get to the same place as thirteen 7/6 (tempering out the comma |5 -13 9 -13&gt;) or three 7/6 to get between 6/5 and the period of 3/2 (tempering out the comma 1728/1715). So, doing this yields 8 or 10, 12 or 14, and 22 note 2MOS. While the notes are rather farther apart, the scheme is uncannily similar to certain versions of the regularly tempered approximate ("full-status") [[A shruti list|shrutis]]. "Macroshrutis" might be a practically perfect term for it if it hasn't been named yet.


The branches of the Napoli family are named thus:
The branches of the Napoli family are named thus:
Line 35: Line 35:
Division of e. g. the 9:4 into equal parts can be conceived of as to directly use this interval as an equivalence, or not. The question of &lt;a class="wiki_link" href="/equivalence"&gt;equivalence&lt;/a&gt; has not even been posed yet. The utility of 9:4 or another ninth as a base though, is apparent by being the standard replacement for the root in jazz piano voicings. Also, as a ninth is the double of a fifth, the fifth of normal root position triads will become the common suspension (5-4 or 5-6) of a ninth-based system. However, thirds and sixths are no longer inverses, and thus an &lt;a class="wiki_link" href="/Pseudo-traditional%20harmonic%20functions%20of%20octatonic%20scale%20degrees"&gt;octatonic scale&lt;/a&gt; (i. e. any of those of the proper Napoli temperament family which are generated by a third or a fourth optionally with a period equivalent to six macrotones, in particular ones at least as wide as 5 degrees of &lt;a class="wiki_link" href="/56edo"&gt;56edo&lt;/a&gt;) takes 1-3-6 as the root position of its regular triad. Many, though not all, of these scales have a pseudo (false) octave, with various degrees of accuracy.&lt;br /&gt;
Division of e. g. the 9:4 into equal parts can be conceived of as to directly use this interval as an equivalence, or not. The question of &lt;a class="wiki_link" href="/equivalence"&gt;equivalence&lt;/a&gt; has not even been posed yet. The utility of 9:4 or another ninth as a base though, is apparent by being the standard replacement for the root in jazz piano voicings. Also, as a ninth is the double of a fifth, the fifth of normal root position triads will become the common suspension (5-4 or 5-6) of a ninth-based system. However, thirds and sixths are no longer inverses, and thus an &lt;a class="wiki_link" href="/Pseudo-traditional%20harmonic%20functions%20of%20octatonic%20scale%20degrees"&gt;octatonic scale&lt;/a&gt; (i. e. any of those of the proper Napoli temperament family which are generated by a third or a fourth optionally with a period equivalent to six macrotones, in particular ones at least as wide as 5 degrees of &lt;a class="wiki_link" href="/56edo"&gt;56edo&lt;/a&gt;) takes 1-3-6 as the root position of its regular triad. Many, though not all, of these scales have a pseudo (false) octave, with various degrees of accuracy.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Incidentally, one way to treat 9/4 as an equivalence is the use of the 4:5:6:7:[8]:(9) chord as the fundamental complete sonority in a very similar way to the 4:5:6:(8) chord in meantone. Whereas in meantone it takes four 3/2 to get to 5/1, here it takes nine 5/4 to get to the same place as thirteen 7/6 (tempering out the comma |5 -13 9 -13&amp;gt;) or three 7/6 to get between 6/5 and the period of 3/2 (tempering out the comma 1728/1715). So, doing this yields 8 or 10, 12 or 14, and 22 note 2MOS. While the notes are rather farther apart, the scheme is uncannily similar to certain versions of the regularly tempered approximate &lt;a class="wiki_link" href="/A%20shruti%20list"&gt;shrutis&lt;/a&gt;. &amp;quot;Macroshrutis&amp;quot; might be a practically perfect term for it if it hasn't been named yet.&lt;br /&gt;
Incidentally, one way to treat 9/4 as an equivalence is the use of the 4:5:6:7:[8]:(9) chord as the fundamental complete sonority in a very similar way to the 4:5:6:(8) chord in meantone. Whereas in meantone it takes four 3/2 to get to 5/1, here it takes nine 5/4 to get to the same place as thirteen 7/6 (tempering out the comma |5 -13 9 -13&amp;gt;) or three 7/6 to get between 6/5 and the period of 3/2 (tempering out the comma 1728/1715). So, doing this yields 8 or 10, 12 or 14, and 22 note 2MOS. While the notes are rather farther apart, the scheme is uncannily similar to certain versions of the regularly tempered approximate (&amp;quot;full-status&amp;quot;) &lt;a class="wiki_link" href="/A%20shruti%20list"&gt;shrutis&lt;/a&gt;. &amp;quot;Macroshrutis&amp;quot; might be a practically perfect term for it if it hasn't been named yet.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The branches of the Napoli family are named thus:&lt;br /&gt;
The branches of the Napoli family are named thus:&lt;br /&gt;