Monzo: Difference between revisions

ArrowHead294 (talk | contribs)
No edit summary
ArrowHead294 (talk | contribs)
No edit summary
Line 14: Line 14:


== Examples ==
== Examples ==
For example, the interval 15/8 can be thought of as having <math>5⋅3</math> in the numerator, and <math>2⋅2⋅2</math> in the denominator. This can be compactly represented by the expression <math>2^{-3} \cdot 3^1 \cdot 5^1</math>, which is exactly equal to 15/8. We construct the monzo by taking the exponent from each prime, in order, and placing them within the {{monzo| … }} brackets, hence yielding {{monzo| -3 1 1 }}.  
For example, the interval 15/8 can be thought of as having <math>5 \cdot 3</math> in the numerator, and <math>2 \cdot 2 \cdot 2</math> in the denominator. This can be compactly represented by the expression <math>2^{-3} \cdot 3^1 \cdot 5^1</math>, which is exactly equal to 15/8. We construct the monzo by taking the exponent from each prime, in order, and placing them within the {{monzo| … }} brackets, hence yielding {{monzo| -3 1 1 }}.  


:'''Practical hint:''' the monzo template helps you getting correct brackets ([[Template:Monzo|read more…]]).
:'''Practical hint:''' the monzo template helps you getting correct brackets ([[Template:Monzo|read more…]]).
Line 62: Line 62:
<math>
<math>
\left\langle \begin{matrix} 12 & 19 & 28 \end{matrix} \mid \begin{matrix} -4 & 4 & -1 \end{matrix} \right\rangle \\
\left\langle \begin{matrix} 12 & 19 & 28 \end{matrix} \mid \begin{matrix} -4 & 4 & -1 \end{matrix} \right\rangle \\
= 12 \times (-4) + 19 \times 4 + 28 \times (-1) \\
= 12 \cdot (-4) + 19 \cdot 4 + 28 \cdot (-1) \\
= 0
= 0
</math>
</math>


In this case, the val {{val| 12 19 28 }} is the [[patent val]] for 12-equal, and {{monzo| -4 4 -1 }} is 81/80, or the syntonic comma. The fact that ⟨ 12 19 28 | -4 4 -1 ⟩ tells us that 81/80 is mapped to 0 steps in 12-equal – aka it is tempered out which tells us that 12-equal is a meantone temperament. It is noteworthy that almost the entirety of Western music composed in the Renaissance and from the sixteenth century onwards, particularly Western music composed for 12-tone circulating temperaments ([[12edo|12 equal]] and unequal [[well temperament]]s), is made possible by the tempering out of 81/80, and that almost all aspects of modern common practice Western music theory (chords and scales) in both classical and non-classical music genres are based exclusively on meantone.
In this case, the val {{val| 12 19 28 }} is the [[patent val]] for 12-equal, and {{monzo| -4 4 -1 }} is 81/80, or the syntonic comma. The fact that ⟨ 12 19 28 | -4 4 -1 ⟩ tells us that 81/80 is mapped to 0 steps in 12-equal&mdash;in other words, it is tempered out&mdash;which tells us that 12-equal is a meantone temperament. It is noteworthy that almost the entirety of Western music composed in the Renaissance and from the sixteenth century onwards, particularly Western music composed for 12-tone circulating temperaments ([[12edo|12 equal]] and unequal [[well temperament]]s), is made possible by the tempering out of 81/80, and that almost all aspects of modern common practice Western music theory (chords and scales) in both classical and non-classical music genres are based exclusively on meantone.


In general:  
In general:  
Line 99: Line 99:


== Notes ==
== Notes ==
<references/>
<references />


[[Category:Regular temperament theory]]
[[Category:Regular temperament theory]]