|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | Below are listed the [[Dyadic_chord|dyadic chords]] of 11-limit [[Meantone_family#Septimal meantone-Meanpop|meanpop temperament]]. Meanpop is one of the two extensions of septimal meantone, which itself is the main extension of 5-limit meantone; this is the temperament tempering out 81/80, 126/125 and 385/384. Typing the chords requires consideration of the fact that meanpop conflates 9/8 and 10/9; if a transversal can be found which shows the chord to be essentially just, that transversal is listed along with a typing as otonal, utonal, or ambitonal. If the chord is essentially tempered, it is analyzed in terms of the transversal which employs 9/8 and 16/9. |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-30 11:13:19 UTC</tt>.<br>
| |
| : The original revision id was <tt>288830329</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Meantone family#Septimal meantone-Meanpop|meanpop temperament]]. Meanpop is one of the two extensions of septimal meantone, which itself is the main extension of 5-limit meantone; this is the temperament tempering out 81/80, 126/125 and 385/384. Typing the chords requires consideration of the fact that meanpop conflates 9/8 and 10/9; if a transversal can be found which shows the chord to be essentially just, that transversal is listed along with a typing as otonal, utonal, or ambitonal. If the chord is essentially tempered, it is analyzed in terms of the transversal which employs 9/8 and 16/9.
| |
|
| |
|
| Chords requiring tempering only by 81/80 are labeled didymic, by 126/125 starling, by 225/224 marvel, by 385/384 keenanismic and by 540/539 swetismic. Chords which require any two of 81/80, 126/125 or 225/224 are labeled erato, and any two of 225/224, 385/384 or 540/539 unimarv. A chord requiring both of 81/80 and 540/539 is labeled terpsichore, and a chord requiring any three independent commas from those discussed above is labeled meanpop. | | Chords requiring tempering only by 81/80 are labeled didymic, by 126/125 starling, by 225/224 marvel, by 385/384 keenanismic and by 540/539 swetismic. Chords which require any two of 81/80, 126/125 or 225/224 are labeled erato, and any two of 225/224, 385/384 or 540/539 unimarv. A chord requiring both of 81/80 and 540/539 is labeled terpsichore, and a chord requiring any three independent commas from those discussed above is labeled meanpop. |
Line 13: |
Line 6: |
|
| |
|
| =Triads= | | =Triads= |
| || Number || Chord || Transversal || Type || | | |
| || 1 || 0-1-2 || 1-3/2-9/8 || ambitonal || | | {| class="wikitable" |
| || 2 || 0-1-3 || 1-3/2-5/3 || otonal || | | |- |
| || 3 || 0-2-3 || 1-10/9-5/3 || utonal || | | | | Number |
| || 4 || 0-1-4 || 1-3/2-5/4 || otonal || | | | | Chord |
| || 5 || 0-2-4 || 1-9/8-5/4 || otonal || | | | | Transversal |
| || 6 || 0-3-4 || 1-5/3-5/4 || utonal || | | | | Type |
| || 7 || 0-2-6 || 1-9/8-7/5 || marvel || | | |- |
| || 8 || 0-3-6 || 1-5/3-7/5 || starling || | | | | 1 |
| || 9 || 0-4-6 || 1-5/4-7/5 || marvel || | | | | 0-1-2 |
| || 10 || 0-2-8 || 1-10/9-14/9 || otonal || | | | | 1-3/2-9/8 |
| || 11 || 0-4-8 || 1-5/4-14/9 || marvel || | | | | ambitonal |
| || 12 || 0-6-8 || 1-7/5-14/9 || utonal || | | |- |
| || 13 || 0-1-9 || 1-3/2-7/6 || otonal || | | | | 2 |
| || 14 || 0-3-9 || 1-5/3-7/6 || otonal || | | | | 0-1-3 |
| || 15 || 0-6-9 || 1-7/5-7/6 || utonal || | | | | 1-3/2-5/3 |
| || 16 || 0-8-9 || 1-14/9-7/6 || utonal || | | | | otonal |
| || 17 || 0-1-10 || 1-3/2-7/4 || otonal || | | |- |
| || 18 || 0-2-10 || 1-9/8-7/4 || otonal || | | | | 3 |
| || 19 || 0-4-10 || 1-5/4-7/4 || otonal || | | | | 0-2-3 |
| || 20 || 0-6-10 || 1-7/5-7/4 || utonal || | | | | 1-10/9-5/3 |
| || 21 || 0-8-10 || 1-14/9-7/4 || utonal || | | | | utonal |
| || 22 || 0-9-10 || 1-7/6-7/4 || utonal || | | |- |
| || 23 || 0-3-13 || 1-5/3-16/11 || keenanismic || | | | | 4 |
| || 24 || 0-4-13 || 1-5/4-16/11 || keenanismic || | | | | 0-1-4 |
| || 25 || 0-9-13 || 1-7/6-16/11 || keenanismic || | | | | 1-3/2-5/4 |
| || 26 || 0-10-13 || 1-7/4-16/11 || keenanismic || | | | | otonal |
| || 27 || 0-1-14 || 1-3/2-12/11 || utonal || | | |- |
| || 28 || 0-4-14 || 1-5/4-12/11 || keenanismic || | | | | 5 |
| || 29 || 0-6-14 || 1-7/5-12/11 || swetismic || | | | | 0-2-4 |
| || 30 || 0-8-14 || 1-14/9-12/11 || swetismic || | | | | 1-9/8-5/4 |
| || 31 || 0-10-14 || 1-7/4-12/11 || keenanismic || | | | | otonal |
| || 32 || 0-13-14 || 1-16/11-12/11 || otonal || | | |- |
| || 33 || 0-1-15 || 1-3/2-18/11 || utonal || | | | | 6 |
| || 34 || 0-2-15 || 1-9/8-18/11 || utonal || | | | | 0-3-4 |
| || 35 || 0-6-15 || 1-7/5-18/11 || swetismic || | | | | 1-5/3-5/4 |
| || 36 || 0-9-15 || 1-7/6-18/11 || swetismic || | | | | utonal |
| || 37 || 0-13-15 || 1-16/11-18/11 || otonal || | | |- |
| || 38 || 0-14-15 || 1-12/11-18/11 || otonal || | | | | 7 |
| || 39 || 0-2-17 || 1-10/9-20/11 || utonal || | | | | 0-2-6 |
| || 40 || 0-3-17 || 1-5/3-20/11 || utonal || | | | | 1-9/8-7/5 |
| || 41 || 0-4-17 || 1-5/4-20/11 || utonal || | | | | marvel |
| || 42 || 0-8-17 || 1-14/9-20/11 || swetismic || | | |- |
| || 43 || 0-9-17 || 1-7/6-20/11 || swetismic || | | | | 8 |
| || 44 || 0-13-17 || 1-16/11-20/11 || otonal || | | | | 0-3-6 |
| || 45 || 0-14-17 || 1-12/11-20/11 || otonal || | | | | 1-5/3-7/5 |
| || 46 || 0-15-17 || 1-18/11-20/11 || otonal || | | | | starling |
| || 47 || 0-6-23 || 1-7/5-14/11 || utonal || | | |- |
| || 48 || 0-8-23 || 1-14/9-14/11 || utonal || | | | | 9 |
| || 49 || 0-9-23 || 1-7/6-14/11 || utonal || | | | | 0-4-6 |
| || 50 || 0-10-23 || 1-7/4-14/11 || utonal || | | | | 1-5/4-7/5 |
| || 51 || 0-13-23 || 1-16/11-14/11 || otonal || | | | | marvel |
| || 52 || 0-14-23 || 1-12/11-14/11 || otonal || | | |- |
| || 53 || 0-15-23 || 1-18/11-14/11 || otonal || | | | | 10 |
| || 54 || 0-17-23 || 1-20/11-14/11 || otonal || | | | | 0-2-8 |
| | | | 1-10/9-14/9 |
| | | | otonal |
| | |- |
| | | | 11 |
| | | | 0-4-8 |
| | | | 1-5/4-14/9 |
| | | | marvel |
| | |- |
| | | | 12 |
| | | | 0-6-8 |
| | | | 1-7/5-14/9 |
| | | | utonal |
| | |- |
| | | | 13 |
| | | | 0-1-9 |
| | | | 1-3/2-7/6 |
| | | | otonal |
| | |- |
| | | | 14 |
| | | | 0-3-9 |
| | | | 1-5/3-7/6 |
| | | | otonal |
| | |- |
| | | | 15 |
| | | | 0-6-9 |
| | | | 1-7/5-7/6 |
| | | | utonal |
| | |- |
| | | | 16 |
| | | | 0-8-9 |
| | | | 1-14/9-7/6 |
| | | | utonal |
| | |- |
| | | | 17 |
| | | | 0-1-10 |
| | | | 1-3/2-7/4 |
| | | | otonal |
| | |- |
| | | | 18 |
| | | | 0-2-10 |
| | | | 1-9/8-7/4 |
| | | | otonal |
| | |- |
| | | | 19 |
| | | | 0-4-10 |
| | | | 1-5/4-7/4 |
| | | | otonal |
| | |- |
| | | | 20 |
| | | | 0-6-10 |
| | | | 1-7/5-7/4 |
| | | | utonal |
| | |- |
| | | | 21 |
| | | | 0-8-10 |
| | | | 1-14/9-7/4 |
| | | | utonal |
| | |- |
| | | | 22 |
| | | | 0-9-10 |
| | | | 1-7/6-7/4 |
| | | | utonal |
| | |- |
| | | | 23 |
| | | | 0-3-13 |
| | | | 1-5/3-16/11 |
| | | | keenanismic |
| | |- |
| | | | 24 |
| | | | 0-4-13 |
| | | | 1-5/4-16/11 |
| | | | keenanismic |
| | |- |
| | | | 25 |
| | | | 0-9-13 |
| | | | 1-7/6-16/11 |
| | | | keenanismic |
| | |- |
| | | | 26 |
| | | | 0-10-13 |
| | | | 1-7/4-16/11 |
| | | | keenanismic |
| | |- |
| | | | 27 |
| | | | 0-1-14 |
| | | | 1-3/2-12/11 |
| | | | utonal |
| | |- |
| | | | 28 |
| | | | 0-4-14 |
| | | | 1-5/4-12/11 |
| | | | keenanismic |
| | |- |
| | | | 29 |
| | | | 0-6-14 |
| | | | 1-7/5-12/11 |
| | | | swetismic |
| | |- |
| | | | 30 |
| | | | 0-8-14 |
| | | | 1-14/9-12/11 |
| | | | swetismic |
| | |- |
| | | | 31 |
| | | | 0-10-14 |
| | | | 1-7/4-12/11 |
| | | | keenanismic |
| | |- |
| | | | 32 |
| | | | 0-13-14 |
| | | | 1-16/11-12/11 |
| | | | otonal |
| | |- |
| | | | 33 |
| | | | 0-1-15 |
| | | | 1-3/2-18/11 |
| | | | utonal |
| | |- |
| | | | 34 |
| | | | 0-2-15 |
| | | | 1-9/8-18/11 |
| | | | utonal |
| | |- |
| | | | 35 |
| | | | 0-6-15 |
| | | | 1-7/5-18/11 |
| | | | swetismic |
| | |- |
| | | | 36 |
| | | | 0-9-15 |
| | | | 1-7/6-18/11 |
| | | | swetismic |
| | |- |
| | | | 37 |
| | | | 0-13-15 |
| | | | 1-16/11-18/11 |
| | | | otonal |
| | |- |
| | | | 38 |
| | | | 0-14-15 |
| | | | 1-12/11-18/11 |
| | | | otonal |
| | |- |
| | | | 39 |
| | | | 0-2-17 |
| | | | 1-10/9-20/11 |
| | | | utonal |
| | |- |
| | | | 40 |
| | | | 0-3-17 |
| | | | 1-5/3-20/11 |
| | | | utonal |
| | |- |
| | | | 41 |
| | | | 0-4-17 |
| | | | 1-5/4-20/11 |
| | | | utonal |
| | |- |
| | | | 42 |
| | | | 0-8-17 |
| | | | 1-14/9-20/11 |
| | | | swetismic |
| | |- |
| | | | 43 |
| | | | 0-9-17 |
| | | | 1-7/6-20/11 |
| | | | swetismic |
| | |- |
| | | | 44 |
| | | | 0-13-17 |
| | | | 1-16/11-20/11 |
| | | | otonal |
| | |- |
| | | | 45 |
| | | | 0-14-17 |
| | | | 1-12/11-20/11 |
| | | | otonal |
| | |- |
| | | | 46 |
| | | | 0-15-17 |
| | | | 1-18/11-20/11 |
| | | | otonal |
| | |- |
| | | | 47 |
| | | | 0-6-23 |
| | | | 1-7/5-14/11 |
| | | | utonal |
| | |- |
| | | | 48 |
| | | | 0-8-23 |
| | | | 1-14/9-14/11 |
| | | | utonal |
| | |- |
| | | | 49 |
| | | | 0-9-23 |
| | | | 1-7/6-14/11 |
| | | | utonal |
| | |- |
| | | | 50 |
| | | | 0-10-23 |
| | | | 1-7/4-14/11 |
| | | | utonal |
| | |- |
| | | | 51 |
| | | | 0-13-23 |
| | | | 1-16/11-14/11 |
| | | | otonal |
| | |- |
| | | | 52 |
| | | | 0-14-23 |
| | | | 1-12/11-14/11 |
| | | | otonal |
| | |- |
| | | | 53 |
| | | | 0-15-23 |
| | | | 1-18/11-14/11 |
| | | | otonal |
| | |- |
| | | | 54 |
| | | | 0-17-23 |
| | | | 1-20/11-14/11 |
| | | | otonal |
| | |} |
|
| |
|
| =Tetrads= | | =Tetrads= |
| || Number || Chord || Transversal || Type || | | |
| || 1 || 0-1-2-3 || 1-3/2-9/8-5/3 || didymic || | | {| class="wikitable" |
| || 2 || 0-1-2-4 || 1-3/2-9/8-5/4 || otonal || | | |- |
| || 3 || 0-1-3-4 || 1-3/2-5/3-5/4 || ambitonal || | | | | Number |
| || 4 || 0-2-3-4 || 1-10/9-5/3-5/4 || utonal || | | | | Chord |
| || 5 || 0-2-3-6 || 1-9/8-5/3-7/5 || erato || | | | | Transversal |
| || 6 || 0-2-4-6 || 1-9/8-5/4-7/5 || erato || | | | | Type |
| || 7 || 0-3-4-6 || 1-5/3-5/4-7/5 || erato || | | |- |
| || 8 || 0-2-4-8 || 1-9/8-5/4-14/9 || erato || | | | | 1 |
| || 9 || 0-2-6-8 || 1-9/8-7/5-14/9 || erato || | | | | 0-1-2-3 |
| || 10 || 0-4-6-8 || 1-5/4-7/5-14/9 || erato || | | | | 1-3/2-9/8-5/3 |
| || 11 || 0-1-3-9 || 1-3/2-5/3-7/6 || otonal || | | | | didymic |
| || 12 || 0-3-6-9 || 1-5/3-7/5-7/6 || starling || | | |- |
| || 13 || 0-6-8-9 || 1-7/5-14/9-7/6 || utonal || | | | | 2 |
| || 14 || 0-1-2-10 || 1-3/2-9/8-7/4 || otonal || | | | | 0-1-2-4 |
| || 15 || 0-1-4-10 || 1-3/2-5/4-7/4 || otonal || | | | | 1-3/2-9/8-5/4 |
| || 16 || 0-2-4-10 || 1-9/8-5/4-7/4 || otonal || | | | | otonal |
| || 17 || 0-2-6-10 || 1-9/8-7/5-7/4 || marvel || | | |- |
| || 18 || 0-4-6-10 || 1-5/4-7/5-7/4 || marvel || | | | | 3 |
| || 19 || 0-2-8-10 || 1-9/8-14/9-7/4 || didymic || | | | | 0-1-3-4 |
| || 20 || 0-4-8-10 || 1-5/4-14/9-7/4 || marvel || | | | | 1-3/2-5/3-5/4 |
| || 21 || 0-6-8-10 || 1-7/5-14/9-7/4 || utonal || | | | | ambitonal |
| || 22 || 0-1-9-10 || 1-3/2-7/6-7/4 || ambitonal || | | |- |
| || 23 || 0-6-9-10 || 1-7/5-7/6-7/4 || utonal || | | | | 4 |
| || 24 || 0-8-9-10 || 1-14/9-7/6-7/4 || utonal || | | | | 0-2-3-4 |
| || 25 || 0-3-4-13 || 1-5/3-5/4-16/11 || keenanismic || | | | | 1-10/9-5/3-5/4 |
| || 26 || 0-3-9-13 || 1-5/3-7/6-16/11 || keenanismic || | | | | utonal |
| || 27 || 0-4-10-13 || 1-5/4-7/4-16/11 || keenanismic || | | |- |
| || 28 || 0-9-10-13 || 1-7/6-7/4-16/11 || keenanismic || | | | | 5 |
| || 29 || 0-1-4-14 || 1-3/2-5/4-12/11 || keenanismic || | | | | 0-2-3-6 |
| || 30 || 0-4-6-14 || 1-5/4-7/5-12/11 || unimarv || | | | | 1-9/8-5/3-7/5 |
| || 31 || 0-4-8-14 || 1-5/4-14/9-12/11 || unimarv || | | | | erato |
| || 32 || 0-6-8-14 || 1-7/5-14/9-12/11 || terpsichore || | | |- |
| || 33 || 0-1-10-14 || 1-3/2-7/4-12/11 || keenanismic || | | | | 6 |
| || 34 || 0-4-10-14 || 1-5/4-7/4-12/11 || keenanismic || | | | | 0-2-4-6 |
| || 35 || 0-6-10-14 || 1-7/5-7/4-12/11 || unimarv || | | | | 1-9/8-5/4-7/5 |
| || 36 || 0-8-10-14 || 1-14/9-7/4-12/11 || unimarv || | | | | erato |
| || 37 || 0-4-13-14 || 1-5/4-16/11-12/11 || keenanismic || | | |- |
| || 38 || 0-10-13-14 || 1-7/4-16/11-12/11 || keenanismic || | | | | 7 |
| || 39 || 0-1-2-15 || 1-3/2-9/8-18/11 || utonal || | | | | 0-3-4-6 |
| || 40 || 0-2-6-15 || 1-9/8-7/5-18/11 || unimarv || | | | | 1-5/3-5/4-7/5 |
| || 41 || 0-1-9-15 || 1-3/2-7/6-18/11 || swetismic || | | | | erato |
| || 42 || 0-6-9-15 || 1-7/5-7/6-18/11 || swetismic || | | |- |
| || 43 || 0-9-13-15 || 1-7/6-16/11-18/11 || unimarv || | | | | 8 |
| || 44 || 0-1-14-15 || 1-3/2-12/11-18/11 || ambitonal || | | | | 0-2-4-8 |
| || 45 || 0-6-14-15 || 1-7/5-12/11-18/11 || swetismic || | | | | 1-9/8-5/4-14/9 |
| || 46 || 0-13-14-15 || 1-16/11-12/11-18/11 || otonal || | | | | erato |
| || 47 || 0-2-3-17 || 1-10/9-5/3-20/11 || utonal || | | |- |
| || 48 || 0-2-4-17 || 1-10/9-5/4-20/11 || utonal || | | | | 9 |
| || 49 || 0-3-4-17 || 1-5/3-5/4-20/11 || utonal || | | | | 0-2-6-8 |
| || 50 || 0-2-8-17 || 1-9/8-14/9-20/11 || terpsichore || | | | | 1-9/8-7/5-14/9 |
| || 51 || 0-4-8-17 || 1-5/4-14/9-20/11 || unimarv || | | | | erato |
| || 52 || 0-3-9-17 || 1-5/3-7/6-20/11 || swetismic || | | |- |
| || 53 || 0-8-9-17 || 1-14/9-7/6-20/11 || swetismic || | | | | 10 |
| || 54 || 0-3-13-17 || 1-5/3-16/11-20/11 || keenanismic || | | | | 0-4-6-8 |
| || 55 || 0-4-13-17 || 1-5/4-16/11-20/11 || keenanismic || | | | | 1-5/4-7/5-14/9 |
| || 56 || 0-9-13-17 || 1-7/6-16/11-20/11 || unimarv || | | | | erato |
| || 57 || 0-4-14-17 || 1-5/4-12/11-20/11 || keenanismic || | | |- |
| || 58 || 0-8-14-17 || 1-14/9-12/11-20/11 || swetismic || | | | | 11 |
| || 59 || 0-13-14-17 || 1-16/11-12/11-20/11 || otonal || | | | | 0-1-3-9 |
| || 60 || 0-2-15-17 || 1-9/8-18/11-20/11 || didymic || | | | | 1-3/2-5/3-7/6 |
| || 61 || 0-9-15-17 || 1-7/6-18/11-20/11 || terpsichore || | | | | otonal |
| || 62 || 0-13-15-17 || 1-16/11-18/11-20/11 || otonal || | | |- |
| || 63 || 0-14-15-17 || 1-12/11-18/11-20/11 || otonal || | | | | 12 |
| || 64 || 0-6-8-23 || 1-7/5-14/9-14/11 || utonal || | | | | 0-3-6-9 |
| || 65 || 0-6-9-23 || 1-7/5-7/6-14/11 || utonal || | | | | 1-5/3-7/5-7/6 |
| || 66 || 0-8-9-23 || 1-14/9-7/6-14/11 || utonal || | | | | starling |
| || 67 || 0-6-10-23 || 1-7/5-7/4-14/11 || utonal || | | |- |
| || 68 || 0-8-10-23 || 1-14/9-7/4-14/11 || utonal || | | | | 13 |
| || 69 || 0-9-10-23 || 1-7/6-7/4-14/11 || utonal || | | | | 0-6-8-9 |
| || 70 || 0-9-13-23 || 1-7/6-16/11-14/11 || keenanismic || | | | | 1-7/5-14/9-7/6 |
| || 71 || 0-10-13-23 || 1-7/4-16/11-14/11 || keenanismic || | | | | utonal |
| || 72 || 0-6-14-23 || 1-7/5-12/11-14/11 || swetismic || | | |- |
| || 73 || 0-8-14-23 || 1-14/9-12/11-14/11 || swetismic || | | | | 14 |
| || 74 || 0-10-14-23 || 1-7/4-12/11-14/11 || keenanismic || | | | | 0-1-2-10 |
| || 75 || 0-13-14-23 || 1-16/11-12/11-14/11 || otonal || | | | | 1-3/2-9/8-7/4 |
| || 76 || 0-6-15-23 || 1-7/5-18/11-14/11 || swetismic || | | | | otonal |
| || 77 || 0-9-15-23 || 1-7/6-18/11-14/11 || swetismic || | | |- |
| || 78 || 0-13-15-23 || 1-16/11-18/11-14/11 || otonal || | | | | 15 |
| || 79 || 0-14-15-23 || 1-12/11-18/11-14/11 || otonal || | | | | 0-1-4-10 |
| || 80 || 0-8-17-23 || 1-14/9-20/11-14/11 || swetismic || | | | | 1-3/2-5/4-7/4 |
| || 81 || 0-9-17-23 || 1-7/6-20/11-14/11 || swetismic || | | | | otonal |
| || 82 || 0-13-17-23 || 1-16/11-20/11-14/11 || otonal || | | |- |
| || 83 || 0-14-17-23 || 1-12/11-20/11-14/11 || otonal || | | | | 16 |
| || 84 || 0-15-17-23 || 1-18/11-20/11-14/11 || otonal || | | | | 0-2-4-10 |
| | | | 1-9/8-5/4-7/4 |
| | | | otonal |
| | |- |
| | | | 17 |
| | | | 0-2-6-10 |
| | | | 1-9/8-7/5-7/4 |
| | | | marvel |
| | |- |
| | | | 18 |
| | | | 0-4-6-10 |
| | | | 1-5/4-7/5-7/4 |
| | | | marvel |
| | |- |
| | | | 19 |
| | | | 0-2-8-10 |
| | | | 1-9/8-14/9-7/4 |
| | | | didymic |
| | |- |
| | | | 20 |
| | | | 0-4-8-10 |
| | | | 1-5/4-14/9-7/4 |
| | | | marvel |
| | |- |
| | | | 21 |
| | | | 0-6-8-10 |
| | | | 1-7/5-14/9-7/4 |
| | | | utonal |
| | |- |
| | | | 22 |
| | | | 0-1-9-10 |
| | | | 1-3/2-7/6-7/4 |
| | | | ambitonal |
| | |- |
| | | | 23 |
| | | | 0-6-9-10 |
| | | | 1-7/5-7/6-7/4 |
| | | | utonal |
| | |- |
| | | | 24 |
| | | | 0-8-9-10 |
| | | | 1-14/9-7/6-7/4 |
| | | | utonal |
| | |- |
| | | | 25 |
| | | | 0-3-4-13 |
| | | | 1-5/3-5/4-16/11 |
| | | | keenanismic |
| | |- |
| | | | 26 |
| | | | 0-3-9-13 |
| | | | 1-5/3-7/6-16/11 |
| | | | keenanismic |
| | |- |
| | | | 27 |
| | | | 0-4-10-13 |
| | | | 1-5/4-7/4-16/11 |
| | | | keenanismic |
| | |- |
| | | | 28 |
| | | | 0-9-10-13 |
| | | | 1-7/6-7/4-16/11 |
| | | | keenanismic |
| | |- |
| | | | 29 |
| | | | 0-1-4-14 |
| | | | 1-3/2-5/4-12/11 |
| | | | keenanismic |
| | |- |
| | | | 30 |
| | | | 0-4-6-14 |
| | | | 1-5/4-7/5-12/11 |
| | | | unimarv |
| | |- |
| | | | 31 |
| | | | 0-4-8-14 |
| | | | 1-5/4-14/9-12/11 |
| | | | unimarv |
| | |- |
| | | | 32 |
| | | | 0-6-8-14 |
| | | | 1-7/5-14/9-12/11 |
| | | | terpsichore |
| | |- |
| | | | 33 |
| | | | 0-1-10-14 |
| | | | 1-3/2-7/4-12/11 |
| | | | keenanismic |
| | |- |
| | | | 34 |
| | | | 0-4-10-14 |
| | | | 1-5/4-7/4-12/11 |
| | | | keenanismic |
| | |- |
| | | | 35 |
| | | | 0-6-10-14 |
| | | | 1-7/5-7/4-12/11 |
| | | | unimarv |
| | |- |
| | | | 36 |
| | | | 0-8-10-14 |
| | | | 1-14/9-7/4-12/11 |
| | | | unimarv |
| | |- |
| | | | 37 |
| | | | 0-4-13-14 |
| | | | 1-5/4-16/11-12/11 |
| | | | keenanismic |
| | |- |
| | | | 38 |
| | | | 0-10-13-14 |
| | | | 1-7/4-16/11-12/11 |
| | | | keenanismic |
| | |- |
| | | | 39 |
| | | | 0-1-2-15 |
| | | | 1-3/2-9/8-18/11 |
| | | | utonal |
| | |- |
| | | | 40 |
| | | | 0-2-6-15 |
| | | | 1-9/8-7/5-18/11 |
| | | | unimarv |
| | |- |
| | | | 41 |
| | | | 0-1-9-15 |
| | | | 1-3/2-7/6-18/11 |
| | | | swetismic |
| | |- |
| | | | 42 |
| | | | 0-6-9-15 |
| | | | 1-7/5-7/6-18/11 |
| | | | swetismic |
| | |- |
| | | | 43 |
| | | | 0-9-13-15 |
| | | | 1-7/6-16/11-18/11 |
| | | | unimarv |
| | |- |
| | | | 44 |
| | | | 0-1-14-15 |
| | | | 1-3/2-12/11-18/11 |
| | | | ambitonal |
| | |- |
| | | | 45 |
| | | | 0-6-14-15 |
| | | | 1-7/5-12/11-18/11 |
| | | | swetismic |
| | |- |
| | | | 46 |
| | | | 0-13-14-15 |
| | | | 1-16/11-12/11-18/11 |
| | | | otonal |
| | |- |
| | | | 47 |
| | | | 0-2-3-17 |
| | | | 1-10/9-5/3-20/11 |
| | | | utonal |
| | |- |
| | | | 48 |
| | | | 0-2-4-17 |
| | | | 1-10/9-5/4-20/11 |
| | | | utonal |
| | |- |
| | | | 49 |
| | | | 0-3-4-17 |
| | | | 1-5/3-5/4-20/11 |
| | | | utonal |
| | |- |
| | | | 50 |
| | | | 0-2-8-17 |
| | | | 1-9/8-14/9-20/11 |
| | | | terpsichore |
| | |- |
| | | | 51 |
| | | | 0-4-8-17 |
| | | | 1-5/4-14/9-20/11 |
| | | | unimarv |
| | |- |
| | | | 52 |
| | | | 0-3-9-17 |
| | | | 1-5/3-7/6-20/11 |
| | | | swetismic |
| | |- |
| | | | 53 |
| | | | 0-8-9-17 |
| | | | 1-14/9-7/6-20/11 |
| | | | swetismic |
| | |- |
| | | | 54 |
| | | | 0-3-13-17 |
| | | | 1-5/3-16/11-20/11 |
| | | | keenanismic |
| | |- |
| | | | 55 |
| | | | 0-4-13-17 |
| | | | 1-5/4-16/11-20/11 |
| | | | keenanismic |
| | |- |
| | | | 56 |
| | | | 0-9-13-17 |
| | | | 1-7/6-16/11-20/11 |
| | | | unimarv |
| | |- |
| | | | 57 |
| | | | 0-4-14-17 |
| | | | 1-5/4-12/11-20/11 |
| | | | keenanismic |
| | |- |
| | | | 58 |
| | | | 0-8-14-17 |
| | | | 1-14/9-12/11-20/11 |
| | | | swetismic |
| | |- |
| | | | 59 |
| | | | 0-13-14-17 |
| | | | 1-16/11-12/11-20/11 |
| | | | otonal |
| | |- |
| | | | 60 |
| | | | 0-2-15-17 |
| | | | 1-9/8-18/11-20/11 |
| | | | didymic |
| | |- |
| | | | 61 |
| | | | 0-9-15-17 |
| | | | 1-7/6-18/11-20/11 |
| | | | terpsichore |
| | |- |
| | | | 62 |
| | | | 0-13-15-17 |
| | | | 1-16/11-18/11-20/11 |
| | | | otonal |
| | |- |
| | | | 63 |
| | | | 0-14-15-17 |
| | | | 1-12/11-18/11-20/11 |
| | | | otonal |
| | |- |
| | | | 64 |
| | | | 0-6-8-23 |
| | | | 1-7/5-14/9-14/11 |
| | | | utonal |
| | |- |
| | | | 65 |
| | | | 0-6-9-23 |
| | | | 1-7/5-7/6-14/11 |
| | | | utonal |
| | |- |
| | | | 66 |
| | | | 0-8-9-23 |
| | | | 1-14/9-7/6-14/11 |
| | | | utonal |
| | |- |
| | | | 67 |
| | | | 0-6-10-23 |
| | | | 1-7/5-7/4-14/11 |
| | | | utonal |
| | |- |
| | | | 68 |
| | | | 0-8-10-23 |
| | | | 1-14/9-7/4-14/11 |
| | | | utonal |
| | |- |
| | | | 69 |
| | | | 0-9-10-23 |
| | | | 1-7/6-7/4-14/11 |
| | | | utonal |
| | |- |
| | | | 70 |
| | | | 0-9-13-23 |
| | | | 1-7/6-16/11-14/11 |
| | | | keenanismic |
| | |- |
| | | | 71 |
| | | | 0-10-13-23 |
| | | | 1-7/4-16/11-14/11 |
| | | | keenanismic |
| | |- |
| | | | 72 |
| | | | 0-6-14-23 |
| | | | 1-7/5-12/11-14/11 |
| | | | swetismic |
| | |- |
| | | | 73 |
| | | | 0-8-14-23 |
| | | | 1-14/9-12/11-14/11 |
| | | | swetismic |
| | |- |
| | | | 74 |
| | | | 0-10-14-23 |
| | | | 1-7/4-12/11-14/11 |
| | | | keenanismic |
| | |- |
| | | | 75 |
| | | | 0-13-14-23 |
| | | | 1-16/11-12/11-14/11 |
| | | | otonal |
| | |- |
| | | | 76 |
| | | | 0-6-15-23 |
| | | | 1-7/5-18/11-14/11 |
| | | | swetismic |
| | |- |
| | | | 77 |
| | | | 0-9-15-23 |
| | | | 1-7/6-18/11-14/11 |
| | | | swetismic |
| | |- |
| | | | 78 |
| | | | 0-13-15-23 |
| | | | 1-16/11-18/11-14/11 |
| | | | otonal |
| | |- |
| | | | 79 |
| | | | 0-14-15-23 |
| | | | 1-12/11-18/11-14/11 |
| | | | otonal |
| | |- |
| | | | 80 |
| | | | 0-8-17-23 |
| | | | 1-14/9-20/11-14/11 |
| | | | swetismic |
| | |- |
| | | | 81 |
| | | | 0-9-17-23 |
| | | | 1-7/6-20/11-14/11 |
| | | | swetismic |
| | |- |
| | | | 82 |
| | | | 0-13-17-23 |
| | | | 1-16/11-20/11-14/11 |
| | | | otonal |
| | |- |
| | | | 83 |
| | | | 0-14-17-23 |
| | | | 1-12/11-20/11-14/11 |
| | | | otonal |
| | |- |
| | | | 84 |
| | | | 0-15-17-23 |
| | | | 1-18/11-20/11-14/11 |
| | | | otonal |
| | |} |
|
| |
|
| =Pentads= | | =Pentads= |
| || Number || Chord || Transversal || Type || | | |
| || 1 || 0-1-2-3-4 || 1-3/2-9/8-5/3-5/4 || didymic || | | {| class="wikitable" |
| || 2 || 0-2-3-4-6 || 1-9/8-5/3-5/4-7/5 || erato || | | |- |
| || 3 || 0-2-4-6-8 || 1-9/8-5/4-7/5-14/9 || erato || | | | | Number |
| || 4 || 0-1-2-4-10 || 1-3/2-9/8-5/4-7/4 || otonal || | | | | Chord |
| || 5 || 0-2-4-6-10 || 1-9/8-5/4-7/5-7/4 || erato || | | | | Transversal |
| || 6 || 0-2-4-8-10 || 1-9/8-5/4-14/9-7/4 || erato || | | | | Type |
| || 7 || 0-2-6-8-10 || 1-9/8-7/5-14/9-7/4 || erato || | | |- |
| || 8 || 0-4-6-8-10 || 1-5/4-7/5-14/9-7/4 || erato || | | | | 1 |
| || 9 || 0-6-8-9-10 || 1-7/5-14/9-7/6-7/4 || utonal || | | | | 0-1-2-3-4 |
| || 10 || 0-4-6-8-14 || 1-5/4-7/5-14/9-12/11 || meanpop || | | | | 1-3/2-9/8-5/3-5/4 |
| || 11 || 0-1-4-10-14 || 1-3/2-5/4-7/4-12/11 || keenanismic || | | | | didymic |
| || 12 || 0-4-6-10-14 || 1-5/4-7/5-7/4-12/11 || unimarv || | | |- |
| || 13 || 0-4-8-10-14 || 1-5/4-14/9-7/4-12/11 || unimarv || | | | | 2 |
| || 14 || 0-6-8-10-14 || 1-7/5-14/9-7/4-12/11 || meanpop || | | | | 0-2-3-4-6 |
| || 15 || 0-4-10-13-14 || 1-5/4-7/4-16/11-12/11 || keenanismic || | | | | 1-9/8-5/3-5/4-7/5 |
| || 16 || 0-2-3-4-17 || 1-10/9-5/3-5/4-20/11 || utonal || | | | | erato |
| || 17 || 0-2-4-8-17 || 1-9/8-5/4-14/9-20/11 || meanpop || | | |- |
| || 18 || 0-3-4-13-17 || 1-5/3-5/4-16/11-20/11 || keenanismic || | | | | 3 |
| || 19 || 0-3-9-13-17 || 1-5/3-7/6-16/11-20/11 || unimarv || | | | | 0-2-4-6-8 |
| || 20 || 0-4-8-14-17 || 1-5/4-14/9-12/11-20/11 || unimarv || | | | | 1-9/8-5/4-7/5-14/9 |
| || 21 || 0-4-13-14-17 || 1-5/4-16/11-12/11-20/11 || keenanismic || | | | | erato |
| || 22 || 0-9-13-15-17 || 1-7/6-16/11-18/11-20/11 || meanpop || | | |- |
| || 23 || 0-13-14-15-17 || 1-16/11-12/11-18/11-20/11 || otonal || | | | | 4 |
| || 24 || 0-6-8-9-23 || 1-7/5-14/9-7/6-14/11 || utonal || | | | | 0-1-2-4-10 |
| || 25 || 0-6-8-10-23 || 1-7/5-14/9-7/4-14/11 || utonal || | | | | 1-3/2-9/8-5/4-7/4 |
| || 26 || 0-6-9-10-23 || 1-7/5-7/6-7/4-14/11 || utonal || | | | | otonal |
| || 27 || 0-8-9-10-23 || 1-14/9-7/6-7/4-14/11 || utonal || | | |- |
| || 28 || 0-9-10-13-23 || 1-7/6-7/4-16/11-14/11 || keenanismic || | | | | 5 |
| || 29 || 0-6-8-14-23 || 1-7/5-14/9-12/11-14/11 || terpsichore || | | | | 0-2-4-6-10 |
| || 30 || 0-6-10-14-23 || 1-7/5-7/4-12/11-14/11 || unimarv || | | | | 1-9/8-5/4-7/5-7/4 |
| || 31 || 0-8-10-14-23 || 1-14/9-7/4-12/11-14/11 || unimarv || | | | | erato |
| || 32 || 0-10-13-14-23 || 1-7/4-16/11-12/11-14/11 || keenanismic || | | |- |
| || 33 || 0-6-9-15-23 || 1-7/5-7/6-18/11-14/11 || swetismic || | | | | 6 |
| || 34 || 0-9-13-15-23 || 1-7/6-16/11-18/11-14/11 || unimarv || | | | | 0-2-4-8-10 |
| || 35 || 0-6-14-15-23 || 1-7/5-12/11-18/11-14/11 || swetismic || | | | | 1-9/8-5/4-14/9-7/4 |
| || 36 || 0-13-14-15-23 || 1-16/11-12/11-18/11-14/11 || otonal || | | | | erato |
| || 37 || 0-8-9-17-23 || 1-14/9-7/6-20/11-14/11 || swetismic || | | |- |
| || 38 || 0-9-13-17-23 || 1-7/6-16/11-20/11-14/11 || unimarv || | | | | 7 |
| || 39 || 0-8-14-17-23 || 1-14/9-12/11-20/11-14/11 || swetismic || | | | | 0-2-6-8-10 |
| || 40 || 0-13-14-17-23 || 1-16/11-12/11-20/11-14/11 || otonal || | | | | 1-9/8-7/5-14/9-7/4 |
| || 41 || 0-9-15-17-23 || 1-7/6-18/11-20/11-14/11 || terpsichore || | | | | erato |
| || 42 || 0-13-15-17-23 || 1-16/11-18/11-20/11-14/11 || otonal || | | |- |
| || 43 || 0-14-15-17-23 || 1-12/11-18/11-20/11-14/11 || otonal || | | | | 8 |
| | | | 0-4-6-8-10 |
| | | | 1-5/4-7/5-14/9-7/4 |
| | | | erato |
| | |- |
| | | | 9 |
| | | | 0-6-8-9-10 |
| | | | 1-7/5-14/9-7/6-7/4 |
| | | | utonal |
| | |- |
| | | | 10 |
| | | | 0-4-6-8-14 |
| | | | 1-5/4-7/5-14/9-12/11 |
| | | | meanpop |
| | |- |
| | | | 11 |
| | | | 0-1-4-10-14 |
| | | | 1-3/2-5/4-7/4-12/11 |
| | | | keenanismic |
| | |- |
| | | | 12 |
| | | | 0-4-6-10-14 |
| | | | 1-5/4-7/5-7/4-12/11 |
| | | | unimarv |
| | |- |
| | | | 13 |
| | | | 0-4-8-10-14 |
| | | | 1-5/4-14/9-7/4-12/11 |
| | | | unimarv |
| | |- |
| | | | 14 |
| | | | 0-6-8-10-14 |
| | | | 1-7/5-14/9-7/4-12/11 |
| | | | meanpop |
| | |- |
| | | | 15 |
| | | | 0-4-10-13-14 |
| | | | 1-5/4-7/4-16/11-12/11 |
| | | | keenanismic |
| | |- |
| | | | 16 |
| | | | 0-2-3-4-17 |
| | | | 1-10/9-5/3-5/4-20/11 |
| | | | utonal |
| | |- |
| | | | 17 |
| | | | 0-2-4-8-17 |
| | | | 1-9/8-5/4-14/9-20/11 |
| | | | meanpop |
| | |- |
| | | | 18 |
| | | | 0-3-4-13-17 |
| | | | 1-5/3-5/4-16/11-20/11 |
| | | | keenanismic |
| | |- |
| | | | 19 |
| | | | 0-3-9-13-17 |
| | | | 1-5/3-7/6-16/11-20/11 |
| | | | unimarv |
| | |- |
| | | | 20 |
| | | | 0-4-8-14-17 |
| | | | 1-5/4-14/9-12/11-20/11 |
| | | | unimarv |
| | |- |
| | | | 21 |
| | | | 0-4-13-14-17 |
| | | | 1-5/4-16/11-12/11-20/11 |
| | | | keenanismic |
| | |- |
| | | | 22 |
| | | | 0-9-13-15-17 |
| | | | 1-7/6-16/11-18/11-20/11 |
| | | | meanpop |
| | |- |
| | | | 23 |
| | | | 0-13-14-15-17 |
| | | | 1-16/11-12/11-18/11-20/11 |
| | | | otonal |
| | |- |
| | | | 24 |
| | | | 0-6-8-9-23 |
| | | | 1-7/5-14/9-7/6-14/11 |
| | | | utonal |
| | |- |
| | | | 25 |
| | | | 0-6-8-10-23 |
| | | | 1-7/5-14/9-7/4-14/11 |
| | | | utonal |
| | |- |
| | | | 26 |
| | | | 0-6-9-10-23 |
| | | | 1-7/5-7/6-7/4-14/11 |
| | | | utonal |
| | |- |
| | | | 27 |
| | | | 0-8-9-10-23 |
| | | | 1-14/9-7/6-7/4-14/11 |
| | | | utonal |
| | |- |
| | | | 28 |
| | | | 0-9-10-13-23 |
| | | | 1-7/6-7/4-16/11-14/11 |
| | | | keenanismic |
| | |- |
| | | | 29 |
| | | | 0-6-8-14-23 |
| | | | 1-7/5-14/9-12/11-14/11 |
| | | | terpsichore |
| | |- |
| | | | 30 |
| | | | 0-6-10-14-23 |
| | | | 1-7/5-7/4-12/11-14/11 |
| | | | unimarv |
| | |- |
| | | | 31 |
| | | | 0-8-10-14-23 |
| | | | 1-14/9-7/4-12/11-14/11 |
| | | | unimarv |
| | |- |
| | | | 32 |
| | | | 0-10-13-14-23 |
| | | | 1-7/4-16/11-12/11-14/11 |
| | | | keenanismic |
| | |- |
| | | | 33 |
| | | | 0-6-9-15-23 |
| | | | 1-7/5-7/6-18/11-14/11 |
| | | | swetismic |
| | |- |
| | | | 34 |
| | | | 0-9-13-15-23 |
| | | | 1-7/6-16/11-18/11-14/11 |
| | | | unimarv |
| | |- |
| | | | 35 |
| | | | 0-6-14-15-23 |
| | | | 1-7/5-12/11-18/11-14/11 |
| | | | swetismic |
| | |- |
| | | | 36 |
| | | | 0-13-14-15-23 |
| | | | 1-16/11-12/11-18/11-14/11 |
| | | | otonal |
| | |- |
| | | | 37 |
| | | | 0-8-9-17-23 |
| | | | 1-14/9-7/6-20/11-14/11 |
| | | | swetismic |
| | |- |
| | | | 38 |
| | | | 0-9-13-17-23 |
| | | | 1-7/6-16/11-20/11-14/11 |
| | | | unimarv |
| | |- |
| | | | 39 |
| | | | 0-8-14-17-23 |
| | | | 1-14/9-12/11-20/11-14/11 |
| | | | swetismic |
| | |- |
| | | | 40 |
| | | | 0-13-14-17-23 |
| | | | 1-16/11-12/11-20/11-14/11 |
| | | | otonal |
| | |- |
| | | | 41 |
| | | | 0-9-15-17-23 |
| | | | 1-7/6-18/11-20/11-14/11 |
| | | | terpsichore |
| | |- |
| | | | 42 |
| | | | 0-13-15-17-23 |
| | | | 1-16/11-18/11-20/11-14/11 |
| | | | otonal |
| | |- |
| | | | 43 |
| | | | 0-14-15-17-23 |
| | | | 1-12/11-18/11-20/11-14/11 |
| | | | otonal |
| | |} |
|
| |
|
| =Hexads= | | =Hexads= |
| || Number || Chord || Transversal || Type ||
| |
| || 1 || 0-2-4-6-8-10 || 1-9/8-5/4-7/5-14/9-7/4 || erato ||
| |
| || 2 || 0-4-6-8-10-14 || 1-5/4-7/5-14/9-7/4-12/11 || meanpop ||
| |
| || 3 || 0-6-8-9-10-23 || 1-7/5-14/9-7/6-7/4-14/11 || utonal ||
| |
| || 4 || 0-6-8-10-14-23 || 1-7/5-14/9-7/4-12/11-14/11 || meanpop ||
| |
| || 5 || 0-9-13-15-17-23 || 1-7/6-16/11-18/11-20/11-14/11 || meanpop ||
| |
| || 6 || 0-13-14-15-17-23 || 1-16/11-12/11-18/11-20/11-14/11 || otonal ||
| |
| </pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Chords of meanpop</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/Meantone%20family#Septimal meantone-Meanpop">meanpop temperament</a>. Meanpop is one of the two extensions of septimal meantone, which itself is the main extension of 5-limit meantone; this is the temperament tempering out 81/80, 126/125 and 385/384. Typing the chords requires consideration of the fact that meanpop conflates 9/8 and 10/9; if a transversal can be found which shows the chord to be essentially just, that transversal is listed along with a typing as otonal, utonal, or ambitonal. If the chord is essentially tempered, it is analyzed in terms of the transversal which employs 9/8 and 16/9.<br />
| |
| <br />
| |
| Chords requiring tempering only by 81/80 are labeled didymic, by 126/125 starling, by 225/224 marvel, by 385/384 keenanismic and by 540/539 swetismic. Chords which require any two of 81/80, 126/125 or 225/224 are labeled erato, and any two of 225/224, 385/384 or 540/539 unimarv. A chord requiring both of 81/80 and 540/539 is labeled terpsichore, and a chord requiring any three independent commas from those discussed above is labeled meanpop.<br />
| |
| <br />
| |
| Meanpop has MOS of size 5, 7, 12, 19, 31, 50 and 81. While 5-limit meantone has been thoroughly explored, the same is not true of meanpop. The 19 note MOS would seem to be a good place to start such explorations.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-1-2<br />
| |
| </td>
| |
| <td>1-3/2-9/8<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-1-3<br />
| |
| </td>
| |
| <td>1-3/2-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-2-3<br />
| |
| </td>
| |
| <td>1-10/9-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-1-4<br />
| |
| </td>
| |
| <td>1-3/2-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-2-4<br />
| |
| </td>
| |
| <td>1-9/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-3-4<br />
| |
| </td>
| |
| <td>1-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-2-6<br />
| |
| </td>
| |
| <td>1-9/8-7/5<br />
| |
| </td>
| |
| <td>marvel<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-3-6<br />
| |
| </td>
| |
| <td>1-5/3-7/5<br />
| |
| </td>
| |
| <td>starling<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-4-6<br />
| |
| </td>
| |
| <td>1-5/4-7/5<br />
| |
| </td>
| |
| <td>marvel<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-2-8<br />
| |
| </td>
| |
| <td>1-10/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-4-8<br />
| |
| </td>
| |
| <td>1-5/4-14/9<br />
| |
| </td>
| |
| <td>marvel<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-6-8<br />
| |
| </td>
| |
| <td>1-7/5-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-1-9<br />
| |
| </td>
| |
| <td>1-3/2-7/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-3-9<br />
| |
| </td>
| |
| <td>1-5/3-7/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-6-9<br />
| |
| </td>
| |
| <td>1-7/5-7/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-8-9<br />
| |
| </td>
| |
| <td>1-14/9-7/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-1-10<br />
| |
| </td>
| |
| <td>1-3/2-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-2-10<br />
| |
| </td>
| |
| <td>1-9/8-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-4-10<br />
| |
| </td>
| |
| <td>1-5/4-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-6-10<br />
| |
| </td>
| |
| <td>1-7/5-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-8-10<br />
| |
| </td>
| |
| <td>1-14/9-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-9-10<br />
| |
| </td>
| |
| <td>1-7/6-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-3-13<br />
| |
| </td>
| |
| <td>1-5/3-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-4-13<br />
| |
| </td>
| |
| <td>1-5/4-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-9-13<br />
| |
| </td>
| |
| <td>1-7/6-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-10-13<br />
| |
| </td>
| |
| <td>1-7/4-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-1-14<br />
| |
| </td>
| |
| <td>1-3/2-12/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-4-14<br />
| |
| </td>
| |
| <td>1-5/4-12/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-6-14<br />
| |
| </td>
| |
| <td>1-7/5-12/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-8-14<br />
| |
| </td>
| |
| <td>1-14/9-12/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-10-14<br />
| |
| </td>
| |
| <td>1-7/4-12/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-13-14<br />
| |
| </td>
| |
| <td>1-16/11-12/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-1-15<br />
| |
| </td>
| |
| <td>1-3/2-18/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-2-15<br />
| |
| </td>
| |
| <td>1-9/8-18/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-6-15<br />
| |
| </td>
| |
| <td>1-7/5-18/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-9-15<br />
| |
| </td>
| |
| <td>1-7/6-18/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-13-15<br />
| |
| </td>
| |
| <td>1-16/11-18/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-14-15<br />
| |
| </td>
| |
| <td>1-12/11-18/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-2-17<br />
| |
| </td>
| |
| <td>1-10/9-20/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-3-17<br />
| |
| </td>
| |
| <td>1-5/3-20/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-4-17<br />
| |
| </td>
| |
| <td>1-5/4-20/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-8-17<br />
| |
| </td>
| |
| <td>1-14/9-20/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-9-17<br />
| |
| </td>
| |
| <td>1-7/6-20/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-13-17<br />
| |
| </td>
| |
| <td>1-16/11-20/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-14-17<br />
| |
| </td>
| |
| <td>1-12/11-20/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-15-17<br />
| |
| </td>
| |
| <td>1-18/11-20/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-6-23<br />
| |
| </td>
| |
| <td>1-7/5-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>0-8-23<br />
| |
| </td>
| |
| <td>1-14/9-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>0-9-23<br />
| |
| </td>
| |
| <td>1-7/6-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>0-10-23<br />
| |
| </td>
| |
| <td>1-7/4-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>0-13-23<br />
| |
| </td>
| |
| <td>1-16/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>0-14-23<br />
| |
| </td>
| |
| <td>1-12/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>0-15-23<br />
| |
| </td>
| |
| <td>1-18/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>0-17-23<br />
| |
| </td>
| |
| <td>1-20/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-1-2-3<br />
| |
| </td>
| |
| <td>1-3/2-9/8-5/3<br />
| |
| </td>
| |
| <td>didymic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-1-2-4<br />
| |
| </td>
| |
| <td>1-3/2-9/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-1-3-4<br />
| |
| </td>
| |
| <td>1-3/2-5/3-5/4<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-2-3-4<br />
| |
| </td>
| |
| <td>1-10/9-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-2-3-6<br />
| |
| </td>
| |
| <td>1-9/8-5/3-7/5<br />
| |
| </td>
| |
| <td>erato<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-2-4-6<br />
| |
| </td>
| |
| <td>1-9/8-5/4-7/5<br />
| |
| </td>
| |
| <td>erato<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-3-4-6<br />
| |
| </td>
| |
| <td>1-5/3-5/4-7/5<br />
| |
| </td>
| |
| <td>erato<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-2-4-8<br />
| |
| </td>
| |
| <td>1-9/8-5/4-14/9<br />
| |
| </td>
| |
| <td>erato<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-2-6-8<br />
| |
| </td>
| |
| <td>1-9/8-7/5-14/9<br />
| |
| </td>
| |
| <td>erato<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-4-6-8<br />
| |
| </td>
| |
| <td>1-5/4-7/5-14/9<br />
| |
| </td>
| |
| <td>erato<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-1-3-9<br />
| |
| </td>
| |
| <td>1-3/2-5/3-7/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-3-6-9<br />
| |
| </td>
| |
| <td>1-5/3-7/5-7/6<br />
| |
| </td>
| |
| <td>starling<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-6-8-9<br />
| |
| </td>
| |
| <td>1-7/5-14/9-7/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-1-2-10<br />
| |
| </td>
| |
| <td>1-3/2-9/8-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-1-4-10<br />
| |
| </td>
| |
| <td>1-3/2-5/4-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-2-4-10<br />
| |
| </td>
| |
| <td>1-9/8-5/4-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-2-6-10<br />
| |
| </td>
| |
| <td>1-9/8-7/5-7/4<br />
| |
| </td>
| |
| <td>marvel<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-4-6-10<br />
| |
| </td>
| |
| <td>1-5/4-7/5-7/4<br />
| |
| </td>
| |
| <td>marvel<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-2-8-10<br />
| |
| </td>
| |
| <td>1-9/8-14/9-7/4<br />
| |
| </td>
| |
| <td>didymic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-4-8-10<br />
| |
| </td>
| |
| <td>1-5/4-14/9-7/4<br />
| |
| </td>
| |
| <td>marvel<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-6-8-10<br />
| |
| </td>
| |
| <td>1-7/5-14/9-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-1-9-10<br />
| |
| </td>
| |
| <td>1-3/2-7/6-7/4<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-6-9-10<br />
| |
| </td>
| |
| <td>1-7/5-7/6-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-8-9-10<br />
| |
| </td>
| |
| <td>1-14/9-7/6-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-3-4-13<br />
| |
| </td>
| |
| <td>1-5/3-5/4-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-3-9-13<br />
| |
| </td>
| |
| <td>1-5/3-7/6-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-4-10-13<br />
| |
| </td>
| |
| <td>1-5/4-7/4-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-9-10-13<br />
| |
| </td>
| |
| <td>1-7/6-7/4-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-1-4-14<br />
| |
| </td>
| |
| <td>1-3/2-5/4-12/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-4-6-14<br />
| |
| </td>
| |
| <td>1-5/4-7/5-12/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-4-8-14<br />
| |
| </td>
| |
| <td>1-5/4-14/9-12/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-6-8-14<br />
| |
| </td>
| |
| <td>1-7/5-14/9-12/11<br />
| |
| </td>
| |
| <td>terpsichore<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-1-10-14<br />
| |
| </td>
| |
| <td>1-3/2-7/4-12/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-4-10-14<br />
| |
| </td>
| |
| <td>1-5/4-7/4-12/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-6-10-14<br />
| |
| </td>
| |
| <td>1-7/5-7/4-12/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-8-10-14<br />
| |
| </td>
| |
| <td>1-14/9-7/4-12/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-4-13-14<br />
| |
| </td>
| |
| <td>1-5/4-16/11-12/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-10-13-14<br />
| |
| </td>
| |
| <td>1-7/4-16/11-12/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-1-2-15<br />
| |
| </td>
| |
| <td>1-3/2-9/8-18/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-2-6-15<br />
| |
| </td>
| |
| <td>1-9/8-7/5-18/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-1-9-15<br />
| |
| </td>
| |
| <td>1-3/2-7/6-18/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-6-9-15<br />
| |
| </td>
| |
| <td>1-7/5-7/6-18/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-9-13-15<br />
| |
| </td>
| |
| <td>1-7/6-16/11-18/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-1-14-15<br />
| |
| </td>
| |
| <td>1-3/2-12/11-18/11<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-6-14-15<br />
| |
| </td>
| |
| <td>1-7/5-12/11-18/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-13-14-15<br />
| |
| </td>
| |
| <td>1-16/11-12/11-18/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-2-3-17<br />
| |
| </td>
| |
| <td>1-10/9-5/3-20/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>0-2-4-17<br />
| |
| </td>
| |
| <td>1-10/9-5/4-20/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>0-3-4-17<br />
| |
| </td>
| |
| <td>1-5/3-5/4-20/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>0-2-8-17<br />
| |
| </td>
| |
| <td>1-9/8-14/9-20/11<br />
| |
| </td>
| |
| <td>terpsichore<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>0-4-8-17<br />
| |
| </td>
| |
| <td>1-5/4-14/9-20/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>0-3-9-17<br />
| |
| </td>
| |
| <td>1-5/3-7/6-20/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>0-8-9-17<br />
| |
| </td>
| |
| <td>1-14/9-7/6-20/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>0-3-13-17<br />
| |
| </td>
| |
| <td>1-5/3-16/11-20/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>55<br />
| |
| </td>
| |
| <td>0-4-13-17<br />
| |
| </td>
| |
| <td>1-5/4-16/11-20/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>56<br />
| |
| </td>
| |
| <td>0-9-13-17<br />
| |
| </td>
| |
| <td>1-7/6-16/11-20/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>0-4-14-17<br />
| |
| </td>
| |
| <td>1-5/4-12/11-20/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>58<br />
| |
| </td>
| |
| <td>0-8-14-17<br />
| |
| </td>
| |
| <td>1-14/9-12/11-20/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>59<br />
| |
| </td>
| |
| <td>0-13-14-17<br />
| |
| </td>
| |
| <td>1-16/11-12/11-20/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>60<br />
| |
| </td>
| |
| <td>0-2-15-17<br />
| |
| </td>
| |
| <td>1-9/8-18/11-20/11<br />
| |
| </td>
| |
| <td>didymic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>61<br />
| |
| </td>
| |
| <td>0-9-15-17<br />
| |
| </td>
| |
| <td>1-7/6-18/11-20/11<br />
| |
| </td>
| |
| <td>terpsichore<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>62<br />
| |
| </td>
| |
| <td>0-13-15-17<br />
| |
| </td>
| |
| <td>1-16/11-18/11-20/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>63<br />
| |
| </td>
| |
| <td>0-14-15-17<br />
| |
| </td>
| |
| <td>1-12/11-18/11-20/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>64<br />
| |
| </td>
| |
| <td>0-6-8-23<br />
| |
| </td>
| |
| <td>1-7/5-14/9-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>65<br />
| |
| </td>
| |
| <td>0-6-9-23<br />
| |
| </td>
| |
| <td>1-7/5-7/6-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>66<br />
| |
| </td>
| |
| <td>0-8-9-23<br />
| |
| </td>
| |
| <td>1-14/9-7/6-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>67<br />
| |
| </td>
| |
| <td>0-6-10-23<br />
| |
| </td>
| |
| <td>1-7/5-7/4-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>68<br />
| |
| </td>
| |
| <td>0-8-10-23<br />
| |
| </td>
| |
| <td>1-14/9-7/4-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>69<br />
| |
| </td>
| |
| <td>0-9-10-23<br />
| |
| </td>
| |
| <td>1-7/6-7/4-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>70<br />
| |
| </td>
| |
| <td>0-9-13-23<br />
| |
| </td>
| |
| <td>1-7/6-16/11-14/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>71<br />
| |
| </td>
| |
| <td>0-10-13-23<br />
| |
| </td>
| |
| <td>1-7/4-16/11-14/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>72<br />
| |
| </td>
| |
| <td>0-6-14-23<br />
| |
| </td>
| |
| <td>1-7/5-12/11-14/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>73<br />
| |
| </td>
| |
| <td>0-8-14-23<br />
| |
| </td>
| |
| <td>1-14/9-12/11-14/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>74<br />
| |
| </td>
| |
| <td>0-10-14-23<br />
| |
| </td>
| |
| <td>1-7/4-12/11-14/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>75<br />
| |
| </td>
| |
| <td>0-13-14-23<br />
| |
| </td>
| |
| <td>1-16/11-12/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>76<br />
| |
| </td>
| |
| <td>0-6-15-23<br />
| |
| </td>
| |
| <td>1-7/5-18/11-14/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>77<br />
| |
| </td>
| |
| <td>0-9-15-23<br />
| |
| </td>
| |
| <td>1-7/6-18/11-14/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>78<br />
| |
| </td>
| |
| <td>0-13-15-23<br />
| |
| </td>
| |
| <td>1-16/11-18/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>79<br />
| |
| </td>
| |
| <td>0-14-15-23<br />
| |
| </td>
| |
| <td>1-12/11-18/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>80<br />
| |
| </td>
| |
| <td>0-8-17-23<br />
| |
| </td>
| |
| <td>1-14/9-20/11-14/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>81<br />
| |
| </td>
| |
| <td>0-9-17-23<br />
| |
| </td>
| |
| <td>1-7/6-20/11-14/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>82<br />
| |
| </td>
| |
| <td>0-13-17-23<br />
| |
| </td>
| |
| <td>1-16/11-20/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>83<br />
| |
| </td>
| |
| <td>0-14-17-23<br />
| |
| </td>
| |
| <td>1-12/11-20/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>84<br />
| |
| </td>
| |
| <td>0-15-17-23<br />
| |
| </td>
| |
| <td>1-18/11-20/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-1-2-3-4<br />
| |
| </td>
| |
| <td>1-3/2-9/8-5/3-5/4<br />
| |
| </td>
| |
| <td>didymic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-2-3-4-6<br />
| |
| </td>
| |
| <td>1-9/8-5/3-5/4-7/5<br />
| |
| </td>
| |
| <td>erato<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-2-4-6-8<br />
| |
| </td>
| |
| <td>1-9/8-5/4-7/5-14/9<br />
| |
| </td>
| |
| <td>erato<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-1-2-4-10<br />
| |
| </td>
| |
| <td>1-3/2-9/8-5/4-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-2-4-6-10<br />
| |
| </td>
| |
| <td>1-9/8-5/4-7/5-7/4<br />
| |
| </td>
| |
| <td>erato<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-2-4-8-10<br />
| |
| </td>
| |
| <td>1-9/8-5/4-14/9-7/4<br />
| |
| </td>
| |
| <td>erato<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-2-6-8-10<br />
| |
| </td>
| |
| <td>1-9/8-7/5-14/9-7/4<br />
| |
| </td>
| |
| <td>erato<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-4-6-8-10<br />
| |
| </td>
| |
| <td>1-5/4-7/5-14/9-7/4<br />
| |
| </td>
| |
| <td>erato<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-6-8-9-10<br />
| |
| </td>
| |
| <td>1-7/5-14/9-7/6-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-4-6-8-14<br />
| |
| </td>
| |
| <td>1-5/4-7/5-14/9-12/11<br />
| |
| </td>
| |
| <td>meanpop<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-1-4-10-14<br />
| |
| </td>
| |
| <td>1-3/2-5/4-7/4-12/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-4-6-10-14<br />
| |
| </td>
| |
| <td>1-5/4-7/5-7/4-12/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-4-8-10-14<br />
| |
| </td>
| |
| <td>1-5/4-14/9-7/4-12/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-6-8-10-14<br />
| |
| </td>
| |
| <td>1-7/5-14/9-7/4-12/11<br />
| |
| </td>
| |
| <td>meanpop<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-4-10-13-14<br />
| |
| </td>
| |
| <td>1-5/4-7/4-16/11-12/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-2-3-4-17<br />
| |
| </td>
| |
| <td>1-10/9-5/3-5/4-20/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-2-4-8-17<br />
| |
| </td>
| |
| <td>1-9/8-5/4-14/9-20/11<br />
| |
| </td>
| |
| <td>meanpop<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-3-4-13-17<br />
| |
| </td>
| |
| <td>1-5/3-5/4-16/11-20/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-3-9-13-17<br />
| |
| </td>
| |
| <td>1-5/3-7/6-16/11-20/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-4-8-14-17<br />
| |
| </td>
| |
| <td>1-5/4-14/9-12/11-20/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-4-13-14-17<br />
| |
| </td>
| |
| <td>1-5/4-16/11-12/11-20/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-9-13-15-17<br />
| |
| </td>
| |
| <td>1-7/6-16/11-18/11-20/11<br />
| |
| </td>
| |
| <td>meanpop<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-13-14-15-17<br />
| |
| </td>
| |
| <td>1-16/11-12/11-18/11-20/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-6-8-9-23<br />
| |
| </td>
| |
| <td>1-7/5-14/9-7/6-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-6-8-10-23<br />
| |
| </td>
| |
| <td>1-7/5-14/9-7/4-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-6-9-10-23<br />
| |
| </td>
| |
| <td>1-7/5-7/6-7/4-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-8-9-10-23<br />
| |
| </td>
| |
| <td>1-14/9-7/6-7/4-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-9-10-13-23<br />
| |
| </td>
| |
| <td>1-7/6-7/4-16/11-14/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-6-8-14-23<br />
| |
| </td>
| |
| <td>1-7/5-14/9-12/11-14/11<br />
| |
| </td>
| |
| <td>terpsichore<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-6-10-14-23<br />
| |
| </td>
| |
| <td>1-7/5-7/4-12/11-14/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-8-10-14-23<br />
| |
| </td>
| |
| <td>1-14/9-7/4-12/11-14/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-10-13-14-23<br />
| |
| </td>
| |
| <td>1-7/4-16/11-12/11-14/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-6-9-15-23<br />
| |
| </td>
| |
| <td>1-7/5-7/6-18/11-14/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-9-13-15-23<br />
| |
| </td>
| |
| <td>1-7/6-16/11-18/11-14/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-6-14-15-23<br />
| |
| </td>
| |
| <td>1-7/5-12/11-18/11-14/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-13-14-15-23<br />
| |
| </td>
| |
| <td>1-16/11-12/11-18/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-8-9-17-23<br />
| |
| </td>
| |
| <td>1-14/9-7/6-20/11-14/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-9-13-17-23<br />
| |
| </td>
| |
| <td>1-7/6-16/11-20/11-14/11<br />
| |
| </td>
| |
| <td>unimarv<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-8-14-17-23<br />
| |
| </td>
| |
| <td>1-14/9-12/11-20/11-14/11<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-13-14-17-23<br />
| |
| </td>
| |
| <td>1-16/11-12/11-20/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-9-15-17-23<br />
| |
| </td>
| |
| <td>1-7/6-18/11-20/11-14/11<br />
| |
| </td>
| |
| <td>terpsichore<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-13-15-17-23<br />
| |
| </td>
| |
| <td>1-16/11-18/11-20/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-14-15-17-23<br />
| |
| </td>
| |
| <td>1-12/11-18/11-20/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-2-4-6-8-10<br />
| |
| </td>
| |
| <td>1-9/8-5/4-7/5-14/9-7/4<br />
| |
| </td>
| |
| <td>erato<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-4-6-8-10-14<br />
| |
| </td>
| |
| <td>1-5/4-7/5-14/9-7/4-12/11<br />
| |
| </td>
| |
| <td>meanpop<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-6-8-9-10-23<br />
| |
| </td>
| |
| <td>1-7/5-14/9-7/6-7/4-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-6-8-10-14-23<br />
| |
| </td>
| |
| <td>1-7/5-14/9-7/4-12/11-14/11<br />
| |
| </td>
| |
| <td>meanpop<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-9-13-15-17-23<br />
| |
| </td>
| |
| <td>1-7/6-16/11-18/11-20/11-14/11<br />
| |
| </td>
| |
| <td>meanpop<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-13-14-15-17-23<br />
| |
| </td>
| |
| <td>1-16/11-12/11-18/11-20/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | {| class="wikitable" |
| | |- |
| | | | Number |
| | | | Chord |
| | | | Transversal |
| | | | Type |
| | |- |
| | | | 1 |
| | | | 0-2-4-6-8-10 |
| | | | 1-9/8-5/4-7/5-14/9-7/4 |
| | | | erato |
| | |- |
| | | | 2 |
| | | | 0-4-6-8-10-14 |
| | | | 1-5/4-7/5-14/9-7/4-12/11 |
| | | | meanpop |
| | |- |
| | | | 3 |
| | | | 0-6-8-9-10-23 |
| | | | 1-7/5-14/9-7/6-7/4-14/11 |
| | | | utonal |
| | |- |
| | | | 4 |
| | | | 0-6-8-10-14-23 |
| | | | 1-7/5-14/9-7/4-12/11-14/11 |
| | | | meanpop |
| | |- |
| | | | 5 |
| | | | 0-9-13-15-17-23 |
| | | | 1-7/6-16/11-18/11-20/11-14/11 |
| | | | meanpop |
| | |- |
| | | | 6 |
| | | | 0-13-14-15-17-23 |
| | | | 1-16/11-12/11-18/11-20/11-14/11 |
| | | | otonal |
| | |} |