Dicot family: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 147269165 - Original comment: **
 
Wikispaces>xenwolf
**Imported revision 147269605 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-06-06 17:33:08 UTC</tt>.<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2010-06-06 17:36:31 UTC</tt>.<br>
: The original revision id was <tt>147269165</tt>.<br>
: The original revision id was <tt>147269605</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 5-limit parent comma for the dicot family is 25/24, the chromatic semitone. Its monzo is |-3 -1 2&gt;, and flipping that yields &lt;&lt;2 1 -3|| for the wedgie. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are [[7edo]], [[24edo]] using the val &lt;24 38 55| and [[31edo]] using the val &lt;31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending dicot is at the edge of what can sensibly be called a temperament at all.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 5-limit parent comma for the dicot family is 25/24, the [[chromatic semitone]]. Its [[monzo]] is |-3 -1 2&gt;, and flipping that yields &lt;&lt;2 1 -3|| for the [[wedgie]]. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are [[7edo]], [[24edo]] using the val &lt;24 38 55| and [[31edo]] using the val &lt;31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending dicot is at the edge of what can sensibly be called a temperament at all.


==Seven limit children==
==Seven limit children==
Line 14: Line 14:
</pre></div>
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Dicot family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 5-limit parent comma for the dicot family is 25/24, the chromatic semitone. Its monzo is |-3 -1 2&amp;gt;, and flipping that yields &amp;lt;&amp;lt;2 1 -3|| for the wedgie. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;, &lt;a class="wiki_link" href="/24edo"&gt;24edo&lt;/a&gt; using the val &amp;lt;24 38 55| and &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; using the val &amp;lt;31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending dicot is at the edge of what can sensibly be called a temperament at all.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Dicot family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 5-limit parent comma for the dicot family is 25/24, the &lt;a class="wiki_link" href="/chromatic%20semitone"&gt;chromatic semitone&lt;/a&gt;. Its &lt;a class="wiki_link" href="/monzo"&gt;monzo&lt;/a&gt; is |-3 -1 2&amp;gt;, and flipping that yields &amp;lt;&amp;lt;2 1 -3|| for the &lt;a class="wiki_link" href="/wedgie"&gt;wedgie&lt;/a&gt;. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;, &lt;a class="wiki_link" href="/24edo"&gt;24edo&lt;/a&gt; using the val &amp;lt;24 38 55| and &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; using the val &amp;lt;31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending dicot is at the edge of what can sensibly be called a temperament at all.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Seven limit children&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Seven limit children&lt;/h2&gt;
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. Septimal dicot, with wedgie &amp;lt;&amp;lt;2 1 6 -3 4 11|| adds 28/27, retaining the same period and generator, decimal with wedgie &amp;lt;&amp;lt;4 2 2 -6 -8 -1|| adds 49/48, and sidi with wedgie &amp;lt;&amp;lt;4 2 9 -3 6 15|| adds 245/243. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth.&lt;/body&gt;&lt;/html&gt;</pre></div>
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. Septimal dicot, with wedgie &amp;lt;&amp;lt;2 1 6 -3 4 11|| adds 28/27, retaining the same period and generator, decimal with wedgie &amp;lt;&amp;lt;4 2 2 -6 -8 -1|| adds 49/48, and sidi with wedgie &amp;lt;&amp;lt;4 2 9 -3 6 15|| adds 245/243. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth.&lt;/body&gt;&lt;/html&gt;</pre></div>