Dicot family: Difference between revisions
Wikispaces>genewardsmith **Imported revision 277267812 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 289094889 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt> | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01-02 13:50:57 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>289094889</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The [[5-limit]] parent [[comma]] for the dicot family is 25/24, the [[chromatic semitone]]. Its [[monzo]] is |-3 -1 2>, and flipping that yields <<2 1 -3|| for the [[wedgie]]. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are [[7edo]], [[24edo]] using the val <24 38 55| and [[31edo]] using the val <31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending dicot is at the edge of what can sensibly be called a temperament at all. | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | ||
The [[5-limit]] parent [[comma]] for the dicot family is 25/24, the [[chromatic semitone]]. Its [[monzo]] is |-3 -1 2>, and flipping that yields <<2 1 -3|| for the [[wedgie]]. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are [[7edo]], [[24edo]] using the val <24 38 55| and [[31edo]] using the val <31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending dicot is at the edge of what can sensibly be called a temperament at all. | |||
==Seven limit children== | ==Seven limit children== | ||
The second comma of the [[Normal lists|normal comma list]] defines which [[7-limit]] family member we are looking at. Septimal dicot, with wedgie <<2 1 3 -3 -1 4|| adds 36/35, sharp with wedgie <<2 1 6 -3 4 11|| adds 28/27, both retaining the same period and generator. Decimal with wedgie <<4 2 2 -6 -8 -1|| adds 49/48, sidi with wedgie <<4 2 9 -3 6 15|| adds 245/243, and jamesbond with wedgie <<0 0 7 0 11 16|| adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator. | The second comma of the [[Normal lists|normal comma list]] defines which [[7-limit]] family member we are looking at. Septimal dicot, with wedgie <<2 1 3 -3 -1 4|| adds 36/35, sharp with wedgie <<2 1 6 -3 4 11|| adds 28/27, both retaining the same period and generator. Decimal with wedgie <<4 2 2 -6 -8 -1|| adds 49/48, sidi with wedgie <<4 2 9 -3 6 15|| adds 245/243, dichotic with wedgie <<2 1 -4 -3 -12 -12|| ads 64/63, and jamesbond with wedgie <<0 0 7 0 11 16|| adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator. | ||
[[POTE tuning|POTE generator]]: 348.594 | [[POTE tuning|POTE generator]]: 348.594 | ||
Line 17: | Line 19: | ||
EDOs: [[7edo|7]], [[10edo|10]], [[14edo|14c]], [[17edo|17]], [[24edo|24c]], [[31edo|31c]] | EDOs: [[7edo|7]], [[10edo|10]], [[14edo|14c]], [[17edo|17]], [[24edo|24c]], [[31edo|31c]] | ||
=Septimal dicot= | |||
[[Comma]]s: 15/14, 25/24 | [[Comma]]s: 15/14, 25/24 | ||
Line 25: | Line 27: | ||
EDOs: [[11edo|11c]], [[14edo|14cd]], [[18edo|18bc]], [[25edo|25bcd]] | EDOs: [[11edo|11c]], [[14edo|14cd]], [[18edo|18bc]], [[25edo|25bcd]] | ||
=Sharp= | |||
Commas: 25/24, 28/27 | Commas: 25/24, 28/27 | ||
Line 33: | Line 35: | ||
EDOs: [[10edo|10]], [[37edo|37cd]], [[57edo|57bcd]] | EDOs: [[10edo|10]], [[37edo|37cd]], [[57edo|57bcd]] | ||
=Decimal= | |||
Commas: 25/24, 49/48 | Commas: 25/24, 49/48 | ||
Line 41: | Line 43: | ||
EDOs: [[10edo|10]], [[14edo|14c]], [[24edo|24c]], [[38edo|38cd]] | EDOs: [[10edo|10]], [[14edo|14c]], [[24edo|24c]], [[38edo|38cd]] | ||
=== | =Dichotic= | ||
Commas: 25/24, 64/63 | |||
POTE generator: ~5/4 = 356.264 | |||
Map: [<1 1 2 4|, <0 2 1 -4|] | |||
Wedgie: <<2 1 -4 -3 -12 -12|| | |||
EDOs: 7, 10, 17, 27c, 37c | |||
Badness: 0.0376 | |||
==11-limit== | |||
Commas: 25/24, 45/44, 64/63 | |||
POTE generator: ~5/4 = 354.262 | |||
Map: [<1 1 2 4 2|, <0 2 1 -4 5|] | |||
EDOs: 7, 10, 17, 27ce, 44ce | |||
Badness: 0.0307 | |||
=Jamesbond= | |||
Commas: 25/24, 81/80 | Commas: 25/24, 81/80 | ||
Line 59: | Line 80: | ||
</pre></div> | </pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Dicot family</title></head><body>The <a class="wiki_link" href="/5-limit">5-limit</a> parent <a class="wiki_link" href="/comma">comma</a> for the dicot family is 25/24, the <a class="wiki_link" href="/chromatic%20semitone">chromatic semitone</a>. Its <a class="wiki_link" href="/monzo">monzo</a> is |-3 -1 2&gt;, and flipping that yields &lt;&lt;2 1 -3|| for the <a class="wiki_link" href="/wedgie">wedgie</a>. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are <a class="wiki_link" href="/7edo">7edo</a>, <a class="wiki_link" href="/24edo">24edo</a> using the val &lt;24 38 55| and <a class="wiki_link" href="/31edo">31edo</a> using the val &lt;31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending dicot is at the edge of what can sensibly be called a temperament at all.<br /> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Dicot family</title></head><body><!-- ws:start:WikiTextTocRule:16:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextTocRule:17: --><!-- ws:end:WikiTextTocRule:17 --><!-- ws:start:WikiTextTocRule:18: --> | <a href="#Septimal dicot">Septimal dicot</a><!-- ws:end:WikiTextTocRule:18 --><!-- ws:start:WikiTextTocRule:19: --> | <a href="#Sharp">Sharp</a><!-- ws:end:WikiTextTocRule:19 --><!-- ws:start:WikiTextTocRule:20: --> | <a href="#Decimal">Decimal</a><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --> | <a href="#Dichotic">Dichotic</a><!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextTocRule:22: --><!-- ws:end:WikiTextTocRule:22 --><!-- ws:start:WikiTextTocRule:23: --> | <a href="#Jamesbond">Jamesbond</a><!-- ws:end:WikiTextTocRule:23 --><!-- ws:start:WikiTextTocRule:24: --><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --> | ||
<!-- ws:end:WikiTextTocRule:25 --><br /> | |||
The <a class="wiki_link" href="/5-limit">5-limit</a> parent <a class="wiki_link" href="/comma">comma</a> for the dicot family is 25/24, the <a class="wiki_link" href="/chromatic%20semitone">chromatic semitone</a>. Its <a class="wiki_link" href="/monzo">monzo</a> is |-3 -1 2&gt;, and flipping that yields &lt;&lt;2 1 -3|| for the <a class="wiki_link" href="/wedgie">wedgie</a>. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are <a class="wiki_link" href="/7edo">7edo</a>, <a class="wiki_link" href="/24edo">24edo</a> using the val &lt;24 38 55| and <a class="wiki_link" href="/31edo">31edo</a> using the val &lt;31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending dicot is at the edge of what can sensibly be called a temperament at all.<br /> | |||
<br /> | <br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:0 -->Seven limit children</h2> | <!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:0 -->Seven limit children</h2> | ||
The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which <a class="wiki_link" href="/7-limit">7-limit</a> family member we are looking at. Septimal dicot, with wedgie &lt;&lt;2 1 3 -3 -1 4|| adds 36/35, sharp with wedgie &lt;&lt;2 1 6 -3 4 11|| adds 28/27, both retaining the same period and generator. Decimal with wedgie &lt;&lt;4 2 2 -6 -8 -1|| adds 49/48, sidi with wedgie &lt;&lt;4 2 9 -3 6 15|| adds 245/243, and jamesbond with wedgie &lt;&lt;0 0 7 0 11 16|| adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.<br /> | The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which <a class="wiki_link" href="/7-limit">7-limit</a> family member we are looking at. Septimal dicot, with wedgie &lt;&lt;2 1 3 -3 -1 4|| adds 36/35, sharp with wedgie &lt;&lt;2 1 6 -3 4 11|| adds 28/27, both retaining the same period and generator. Decimal with wedgie &lt;&lt;4 2 2 -6 -8 -1|| adds 49/48, sidi with wedgie &lt;&lt;4 2 9 -3 6 15|| adds 245/243, dichotic with wedgie &lt;&lt;2 1 -4 -3 -12 -12|| ads 64/63, and jamesbond with wedgie &lt;&lt;0 0 7 0 11 16|| adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.<br /> | ||
<br /> | <br /> | ||
<a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 348.594<br /> | <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 348.594<br /> | ||
Line 70: | Line 93: | ||
EDOs: <a class="wiki_link" href="/7edo">7</a>, <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/14edo">14c</a>, <a class="wiki_link" href="/17edo">17</a>, <a class="wiki_link" href="/24edo">24c</a>, <a class="wiki_link" href="/31edo">31c</a><br /> | EDOs: <a class="wiki_link" href="/7edo">7</a>, <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/14edo">14c</a>, <a class="wiki_link" href="/17edo">17</a>, <a class="wiki_link" href="/24edo">24c</a>, <a class="wiki_link" href="/31edo">31c</a><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:2:&lt; | <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Septimal dicot"></a><!-- ws:end:WikiTextHeadingRule:2 -->Septimal dicot</h1> | ||
<a class="wiki_link" href="/Comma">Comma</a>s: 15/14, 25/24<br /> | <a class="wiki_link" href="/Comma">Comma</a>s: 15/14, 25/24<br /> | ||
<br /> | <br /> | ||
Line 78: | Line 101: | ||
EDOs: <a class="wiki_link" href="/11edo">11c</a>, <a class="wiki_link" href="/14edo">14cd</a>, <a class="wiki_link" href="/18edo">18bc</a>, <a class="wiki_link" href="/25edo">25bcd</a><br /> | EDOs: <a class="wiki_link" href="/11edo">11c</a>, <a class="wiki_link" href="/14edo">14cd</a>, <a class="wiki_link" href="/18edo">18bc</a>, <a class="wiki_link" href="/25edo">25bcd</a><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:4:&lt; | <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Sharp"></a><!-- ws:end:WikiTextHeadingRule:4 -->Sharp</h1> | ||
Commas: 25/24, 28/27<br /> | Commas: 25/24, 28/27<br /> | ||
<br /> | <br /> | ||
Line 86: | Line 109: | ||
EDOs: <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/37edo">37cd</a>, <a class="wiki_link" href="/57edo">57bcd</a><br /> | EDOs: <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/37edo">37cd</a>, <a class="wiki_link" href="/57edo">57bcd</a><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:6:&lt; | <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Decimal"></a><!-- ws:end:WikiTextHeadingRule:6 -->Decimal</h1> | ||
Commas: 25/24, 49/48<br /> | Commas: 25/24, 49/48<br /> | ||
<br /> | <br /> | ||
Line 94: | Line 117: | ||
EDOs: <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/14edo">14c</a>, <a class="wiki_link" href="/24edo">24c</a>, <a class="wiki_link" href="/38edo">38cd</a><br /> | EDOs: <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/14edo">14c</a>, <a class="wiki_link" href="/24edo">24c</a>, <a class="wiki_link" href="/38edo">38cd</a><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:8:&lt; | <!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Dichotic"></a><!-- ws:end:WikiTextHeadingRule:8 -->Dichotic</h1> | ||
Commas: 25/24, 64/63<br /> | |||
<br /> | |||
POTE generator: ~5/4 = 356.264<br /> | |||
<br /> | |||
Map: [&lt;1 1 2 4|, &lt;0 2 1 -4|]<br /> | |||
Wedgie: &lt;&lt;2 1 -4 -3 -12 -12||<br /> | |||
EDOs: 7, 10, 17, 27c, 37c<br /> | |||
Badness: 0.0376<br /> | |||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="Dichotic-11-limit"></a><!-- ws:end:WikiTextHeadingRule:10 -->11-limit</h2> | |||
Commas: 25/24, 45/44, 64/63<br /> | |||
<br /> | |||
POTE generator: ~5/4 = 354.262<br /> | |||
<br /> | |||
Map: [&lt;1 1 2 4 2|, &lt;0 2 1 -4 5|]<br /> | |||
EDOs: 7, 10, 17, 27ce, 44ce<br /> | |||
Badness: 0.0307<br /> | |||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="Jamesbond"></a><!-- ws:end:WikiTextHeadingRule:12 -->Jamesbond</h1> | |||
Commas: 25/24, 81/80<br /> | Commas: 25/24, 81/80<br /> | ||
<br /> | <br /> | ||
Line 102: | Line 144: | ||
EDOs: 7, <a class="wiki_link" href="/14edo">14c</a><br /> | EDOs: 7, <a class="wiki_link" href="/14edo">14c</a><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:14:&lt;h3&gt; --><h3 id="toc7"><a name="Jamesbond--Sidi"></a><!-- ws:end:WikiTextHeadingRule:14 -->Sidi</h3> | ||
Commas: 25/24, 245/243<br /> | Commas: 25/24, 245/243<br /> | ||
<br /> | <br /> |