User:Triethylamine/draft: リーマンゼータ関数と調律: Difference between revisions
m →導出の準備 |
m →導出の準備 |
||
Line 20: | Line 20: | ||
ここで、以下の関数を考える。 | ここで、以下の関数を考える。 | ||
<math>\displaystyle \xi(x) = \ | :<math>\displaystyle \xi(x) = \sum_{q \in \mathbb{P}} \left(\frac{||x \log_2 q||}{\log_2 q}\right)^2</math> | ||
この関数には、関連する一般化パテントヴァルに対応する局所的極小値がある。極小値は、関連するヴァルのオクターヴのTenney-ユークリッド調律である ''x'' の値に対して発生する。一方、これらの極小値における ξ の値は、ヴァルのTenney-ユークリッド相対誤差の 2 乗であり、TE誤差とTE複雑度の積に等しい。「TE単純悪さ」として知られていることもある。 | この関数には、関連する一般化パテントヴァルに対応する局所的極小値がある。極小値は、関連するヴァルのオクターヴのTenney-ユークリッド調律である ''x'' の値に対して発生する。一方、これらの極小値における ξ の値は、ヴァルのTenney-ユークリッド相対誤差の 2 乗であり、TE誤差とTE複雑度の積に等しい。「TE単純悪さ」として知られていることもある。 | ||
Line 26: | Line 26: | ||
ここで、特定の素数リミットの式ではなく、すべての素数に適用される式が必要だとする。上式は収束しないため、無限和にすることはできない。しかし、重み係数をべき乗に変更すると収束するようになる。 | ここで、特定の素数リミットの式ではなく、すべての素数に適用される式が必要だとする。上式は収束しないため、無限和にすることはできない。しかし、重み係数をべき乗に変更すると収束するようになる。 | ||
<math>\displaystyle \ | :<math>\displaystyle \sum_{q \in \mathbb{P}} \frac{||x \log_2 q||^2}{q^s}</math> | ||
(以下未推敲) | (以下未推敲) |