38edo: Difference between revisions
Contribution (talk | contribs) |
Contribution (talk | contribs) No edit summary |
||
Line 5: | Line 5: | ||
Since 38 = 2*19, it can be thought of as two parallel [[19edo]]s. While the halving of the step size lowers [[consistency]] and leaves it only mediocre in terms of overall [[Relative_errors_of_small_EDOs|relative error]], the fact that the 3rd & 5th harmonics are flat by almost exactly the same amount, while the 11th is double that means there are quite a few near perfect composite ratios, such as the the [[6/5]] it shares with 19edo, plus [[11/9]], [[15/11]] & [[25/22]], (and their inversions) while a single step nears [[55/54]]. This gives several interesting possibilities for unusual near-just chords such as 15:18:22:25:30. It [[tempers out]] the same [[5-limit]] commas as 19edo, namely [[81/80]], [[3125/3072]] and [[15625/15552]]. In the [[7-limit]], we can add [[50/49]], and tempering out 81/80 and 50/49 gives [[injera]] temperament, for which 38 is the [[optimal patent val]]. In the [[11-limit]], we can add 121/120 and 176/175. | Since 38 = 2*19, it can be thought of as two parallel [[19edo]]s. While the halving of the step size lowers [[consistency]] and leaves it only mediocre in terms of overall [[Relative_errors_of_small_EDOs|relative error]], the fact that the 3rd & 5th harmonics are flat by almost exactly the same amount, while the 11th is double that means there are quite a few near perfect composite ratios, such as the the [[6/5]] it shares with 19edo, plus [[11/9]], [[15/11]] & [[25/22]], (and their inversions) while a single step nears [[55/54]]. This gives several interesting possibilities for unusual near-just chords such as 15:18:22:25:30. It [[tempers out]] the same [[5-limit]] commas as 19edo, namely [[81/80]], [[3125/3072]] and [[15625/15552]]. In the [[7-limit]], we can add [[50/49]], and tempering out 81/80 and 50/49 gives [[injera]] temperament, for which 38 is the [[optimal patent val]]. In the [[11-limit]], we can add 121/120 and 176/175. | ||
In [[Warts|38df]], every [[prime interval]] from 3 to 19 is characterized by a flat intonation. Furthermore, the mapping of all [[19-odd-limit]] intervals in 38df aligns with their closest approximations in 38edo, excepting for 7/4 and 13/8, along with their octave complements 8/7 and 16/13, which are by definition mapped to their secondary optimal steps within 38df. | In [[Warts|38df]], every [[prime interval]] from 3 to 19 is characterized by a flat intonation. Furthermore, the [[mapping]] of all [[19-odd-limit]] intervals in 38df aligns with their closest approximations in 38edo, excepting for 7/4 and 13/8, along with their octave complements 8/7 and 16/13, which are by definition mapped to their secondary optimal steps within 38df. In other words, all intervals within the 19-odd-limit are [[Consistency|consistent]] within the 38df [[val]] ⟨38 60 88 106 131 140 155 161]. | ||
The harmonic series from 1 to 20 is approximated within 38df by the sequence: 38 22 16 12 10 8 8 6 6 5 5 4 4 4 4 3 3 3 3 | The harmonic series from 1 to 20 is approximated within 38df by the sequence: 38 22 16 12 10 8 8 6 6 5 5 4 4 4 4 3 3 3 3 |