Breedsmic temperaments: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 538718916 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
__FORCETOC__
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2015-01-27 13:47:30 UTC</tt>.<br>
: The original revision id was <tt>538718916</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
 
 
Breedsmic temperaments are rank two temperaments tempering out the breedsma, |-5 -1 -2 4&gt; = 2401/2400. This is the amount by which two 49/40 intervals exceed 3/2, and by which two 60/49 intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system (12edo, for example) which does not possess a neutral third cannot be tempering out the breedsma.
Breedsmic temperaments are rank two temperaments tempering out the breedsma, |-5 -1 -2 4&gt; = 2401/2400. This is the amount by which two 49/40 intervals exceed 3/2, and by which two 60/49 intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system (12edo, for example) which does not possess a neutral third cannot be tempering out the breedsma.


It is also the amount by which four stacked 10/7 intervals exceed 25/6: 10000/2401 * 2401/2400 = 10000/2400 = 25/6, which is two octaves above the chromatic semitone, 25/24. We might note also that 49/40 * 10/7 = 7/4 and 49/40 * (10/7)^2 = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40+60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.
It is also the amount by which four stacked 10/7 intervals exceed 25/6: 10000/2401 * 2401/2400 = 10000/2400 = 25/6, which is two octaves above the chromatic semitone, 25/24. We might note also that 49/40 * 10/7 = 7/4 and 49/40 * (10/7)^2 = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40+60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.


=Hemififths=  
=Hemififths=
Hemififths tempers out 5120/5103, the hemifamity comma, and 10976/10935, hemimage. It has a neutral third as a generator, with [[99edo]] and [[140edo]] providing good tunings, and [[239edo]] an even better one; and other possible tunings are (160)^(1/25), giving just 5s, the 7 and 9 limit minimax tuning, or 14^(1/13), giving just 7s. It may be called the 41&amp;58 temperament and has wedgie &lt;&lt;2 25 13 35 15 -40||, which tells us that it requires 25 generator steps to get to the class for major thirds, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17 and 24 note MOS are suited. The full force of this highly accurate temperament can be found using the 41 note MOS or even the 34 note 2MOS.
Hemififths tempers out 5120/5103, the hemifamity comma, and 10976/10935, hemimage. It has a neutral third as a generator, with [[99edo|99edo]] and [[140edo|140edo]] providing good tunings, and [[239edo|239edo]] an even better one; and other possible tunings are (160)^(1/25), giving just 5s, the 7 and 9 limit minimax tuning, or 14^(1/13), giving just 7s. It may be called the 41&amp;58 temperament and has wedgie &lt;&lt;2 25 13 35 15 -40||, which tells us that it requires 25 generator steps to get to the class for major thirds, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17 and 24 note MOS are suited. The full force of this highly accurate temperament can be found using the 41 note MOS or even the 34 note 2MOS.


By adding 243/242 (which also means 441/440, 540/539 and 896/891) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. [[99edo]] is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding 144/143 brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be 16/13. 99 remains a good tuning choice.
By adding 243/242 (which also means 441/440, 540/539 and 896/891) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. [[99edo|99edo]] is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding 144/143 brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be 16/13. 99 remains a good tuning choice.


==5-limit==
==5-limit==
Line 24: Line 15:


Map: [&lt;1 1 -5|, &lt;0 2 25|]
Map: [&lt;1 1 -5|, &lt;0 2 25|]
EDOs: 41, 58, 99, 239, 338, 915b, 1253bc
EDOs: 41, 58, 99, 239, 338, 915b, 1253bc
Badness: 0.3728
Badness: 0.3728


Line 31: Line 24:


7 and 9-limit minimax
7 and 9-limit minimax
[|1 0 0 0&gt;, |7/5, 0, 2/25, 0&gt;, |0 0 1 0&gt;, |8/5 0 13/25 0&gt;]
[|1 0 0 0&gt;, |7/5, 0, 2/25, 0&gt;, |0 0 1 0&gt;, |8/5 0 13/25 0&gt;]
Eigenvalues: 2, 5
Eigenvalues: 2, 5


Line 37: Line 32:


Map: [&lt;1 1 -5 -1|, &lt;0 2 25 13|]
Map: [&lt;1 1 -5 -1|, &lt;0 2 25 13|]
EDOs: [[41edo|41]], [[58edo|58]], [[99edo|99]], [[239edo|239]], [[338edo|338]]
EDOs: [[41edo|41]], [[58edo|58]], [[99edo|99]], [[239edo|239]], [[338edo|338]]
Badness: 0.0222
Badness: 0.0222


==11-limit==  
==11-limit==
Commas: 243/242, 441/440, 896/891
Commas: 243/242, 441/440, 896/891


Line 46: Line 43:


Map: [&lt;1 1 -5 -1 2|, &lt;0 2 25 13 5|]
Map: [&lt;1 1 -5 -1 2|, &lt;0 2 25 13 5|]
EDOs: 7, 17, 41, 58, 99
EDOs: 7, 17, 41, 58, 99
Badness: 0.0235
Badness: 0.0235


==13-limit==  
==13-limit==
Commas: 144/143, 196/195, 243/242, 364/363
Commas: 144/143, 196/195, 243/242, 364/363


Line 55: Line 54:


Map: [&lt;1 1 -5 -1 2 4|, &lt;0 2 25 13 5 -1|]
Map: [&lt;1 1 -5 -1 2 4|, &lt;0 2 25 13 5 -1|]
EDOs: 7, 17, 41, 58, 99
EDOs: 7, 17, 41, 58, 99
Badness: 0.0191
Badness: 0.0191


Line 64: Line 65:


Map: [&lt;2 0 -35 -15 -47|, &lt;0 2 25 13 34|]
Map: [&lt;2 0 -35 -15 -47|, &lt;0 2 25 13 34|]
EDOs: 58, 140, 198, 734bc, 932bcd, 1130bcd
EDOs: 58, 140, 198, 734bc, 932bcd, 1130bcd
Badness: 42.487
Badness: 42.487


Line 73: Line 76:


Map: [&lt;2 0 -35 -15 -47 -37|, &lt;0 2 25 13 34 28|]
Map: [&lt;2 0 -35 -15 -47 -37|, &lt;0 2 25 13 34 28|]
EDOs: 58, 140, 198, 536f, 734bcf, 932bcdf
EDOs: 58, 140, 198, 536f, 734bcf, 932bcdf
Badness: 0.0212
Badness: 0.0212


=Tertiaseptal=  
=Tertiaseptal=
Aside from the breedsma, tertiaseptal tempers out 65625/65536, the horwell comma, 703125/702464, the meter, and 2100875/2097152. It can be described as the 140&amp;171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning. The 15 or 16 note MOS can be used to explore no-threes harmony, and the 31 note MOS gives plenty of room for those as well.
Aside from the breedsma, tertiaseptal tempers out 65625/65536, the horwell comma, 703125/702464, the meter, and 2100875/2097152. It can be described as the 140&amp;171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo|171edo]] makes for an excellent tuning. The 15 or 16 note MOS can be used to explore no-threes harmony, and the 31 note MOS gives plenty of room for those as well.


Commas: 2401/2400, 65625/65536
Commas: 2401/2400, 65625/65536
Line 84: Line 89:


Map: [&lt;1 3 2 3|, &lt;0 -22 5 -3|]
Map: [&lt;1 3 2 3|, &lt;0 -22 5 -3|]
EDOs: 15, 16, 31, 109, 140, 171
EDOs: 15, 16, 31, 109, 140, 171
Badness: 0.0130
Badness: 0.0130


==11-limit==  
==11-limit==
Commas: 243/242, 441/440, 65625/65536
Commas: 243/242, 441/440, 65625/65536


Line 93: Line 100:


Map: [&lt;1 3 2 3 7|, &lt;0 -22 5 -3 -55|]
Map: [&lt;1 3 2 3 7|, &lt;0 -22 5 -3 -55|]
EDOs: 15, 16, 31, 171, 202
EDOs: 15, 16, 31, 171, 202
Badness: 0.0356
Badness: 0.0356


Line 102: Line 111:


Map: [&lt;1 3 2 3 7 1|, &lt;0 -22 5 -3 -55 42|]
Map: [&lt;1 3 2 3 7 1|, &lt;0 -22 5 -3 -55 42|]
EDOs: 31, 140e, 171, 373ef, 544ef
EDOs: 31, 140e, 171, 373ef, 544ef
Badness: 0.0369
Badness: 0.0369


Line 111: Line 122:


Map: [&lt;1 3 2 3 5|, &lt;0 -22 5 -3 -24|]
Map: [&lt;1 3 2 3 5|, &lt;0 -22 5 -3 -24|]
EDOs: 31, 109, 140, 171e, 311e
EDOs: 31, 109, 140, 171e, 311e
Badness: 0.0302
Badness: 0.0302


Line 120: Line 133:


Map: [&lt;1 3 2 3 6|, &lt;0 -44 10 -6 -79|]
Map: [&lt;1 3 2 3 6|, &lt;0 -44 10 -6 -79|]
EDOs: 31, 280, 311, 342, 2021cde, 3731cde
EDOs: 31, 280, 311, 342, 2021cde, 3731cde
Badness: 0.0156
Badness: 0.0156


=Harry=  
=Harry=
Commas: 2401/2400, 19683/19600
Commas: 2401/2400, 19683/19600


Line 130: Line 145:
Harry becomes much more interesting as we move to the 11-limit, where we can add 243/242, 441/440 and 540/539 to the set of commas. 130 and especially 202 still make for good tuning choices, and the octave part of the wedgie is &lt;&lt;12 34 20 30 ...||.
Harry becomes much more interesting as we move to the 11-limit, where we can add 243/242, 441/440 and 540/539 to the set of commas. 130 and especially 202 still make for good tuning choices, and the octave part of the wedgie is &lt;&lt;12 34 20 30 ...||.


Similar comments apply to the 13-limit, where we can add 351/350 and 364/363 to the commas, with &lt;&lt;12 34 20 30 52 ...|| as the octave wedgie. [[130edo]] is again a good tuning choice, but even better might be tuning 7s justly, which can be done via a generator of 83.1174 cents. 72 notes of harry gives plenty of room even for the 13-limit harmonies.
Similar comments apply to the 13-limit, where we can add 351/350 and 364/363 to the commas, with &lt;&lt;12 34 20 30 52 ...|| as the octave wedgie. [[130edo|130edo]] is again a good tuning choice, but even better might be tuning 7s justly, which can be done via a generator of 83.1174 cents. 72 notes of harry gives plenty of room even for the 13-limit harmonies.


[[POTE tuning|POTE generator]]: ~21/20 = 83.156
[[POTE_tuning|POTE generator]]: ~21/20 = 83.156


Map: [&lt;2 4 7 7|, &lt;0 -6 -17 -10|]
Map: [&lt;2 4 7 7|, &lt;0 -6 -17 -10|]
Wedgie: &lt;&lt;12 34 20 26 -2 -49||
Wedgie: &lt;&lt;12 34 20 26 -2 -49||
EDOs: 14, 58, 72, 130, 202, 534, 938
EDOs: 14, 58, 72, 130, 202, 534, 938
Badness: 0.0341
Badness: 0.0341


==11-limit==  
==11-limit==
Commas: 243/242, 441/440, 4000/3993
Commas: 243/242, 441/440, 4000/3993


[[POTE tuning|POTE generator]]: ~21/20 = 83.167
[[POTE_tuning|POTE generator]]: ~21/20 = 83.167


Map: [&lt;2 4 7 7 9|, &lt;0 -6 -17 -10 -15|]
Map: [&lt;2 4 7 7 9|, &lt;0 -6 -17 -10 -15|]
EDOs: 14, 58, 72, 130, 202
EDOs: 14, 58, 72, 130, 202
Badness: 0.0159
Badness: 0.0159


==13-limit==  
==13-limit==
Commas: 243/242, 351/350, 441/440, 676/675
Commas: 243/242, 351/350, 441/440, 676/675


[[POTE tuning|POTE generator]]: ~21/20 = 83.116
[[POTE_tuning|POTE generator]]: ~21/20 = 83.116


Map: [&lt;2 4 7 7 9 11|, &lt;0 -6 -17 -10 -15 -26|]
Map: [&lt;2 4 7 7 9 11|, &lt;0 -6 -17 -10 -15 -26|]
EDOs: 14, 58, 72, 130, 462
EDOs: 14, 58, 72, 130, 462
Badness: 0.0130
Badness: 0.0130


=Quasiorwell=  
=Quasiorwell=
In addition to 2401/2400, quasiorwell tempers out 29360128/29296875 = |22 -1 -10 1&gt;. It has a wedgie &lt;&lt;38 -3 8 -93 -94 27||. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31&amp;270 temperament, and as one might expect, 61/270 makes for an excellent tuning choice. Other possibilities are (7/2)^(1/8), giving just 7s, or 384^(1/38), giving pure fifths.
In addition to 2401/2400, quasiorwell tempers out 29360128/29296875 = |22 -1 -10 1&gt;. It has a wedgie &lt;&lt;38 -3 8 -93 -94 27||. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31&amp;270 temperament, and as one might expect, 61/270 makes for an excellent tuning choice. Other possibilities are (7/2)^(1/8), giving just 7s, or 384^(1/38), giving pure fifths.


Line 167: Line 189:


Map: [&lt;1 31 0 9|, &lt;0 -38 3 -8|]
Map: [&lt;1 31 0 9|, &lt;0 -38 3 -8|]
EDOs: [[31edo|31]], [[177edo|177]], [[208edo|208]], [[239edo|239]], [[270edo|270]], [[571edo|571]], [[841edo|841]], [[1111edo|1111]]
EDOs: [[31edo|31]], [[177edo|177]], [[208edo|208]], [[239edo|239]], [[270edo|270]], [[571edo|571]], [[841edo|841]], [[1111edo|1111]]
Badness: 0.0358
Badness: 0.0358


==11-limit==  
==11-limit==
Commas: 2401/2400, 3025/3024, 5632/5625
Commas: 2401/2400, 3025/3024, 5632/5625


Line 176: Line 200:


Map: [&lt;1 31 0 9 53|, &lt;0 -38 3 -8 -64|]
Map: [&lt;1 31 0 9 53|, &lt;0 -38 3 -8 -64|]
EDOs: [[31edo|31]], [[208edo|208]], [[239edo|239]], [[270edo|270]]
EDOs: [[31edo|31]], [[208edo|208]], [[239edo|239]], [[270edo|270]]
Badness: 0.0175
Badness: 0.0175


==13-limit==  
==13-limit==
Commas: 1001/1000, 1716/1715, 3025/3024, 4096/4095
Commas: 1001/1000, 1716/1715, 3025/3024, 4096/4095


Line 185: Line 211:


Map: [&lt;1 31 0 9 53 -59|, &lt;0 -38 3 -8 -64 81|]
Map: [&lt;1 31 0 9 53 -59|, &lt;0 -38 3 -8 -64 81|]
EDOs: [[31edo|31]], [[239edo|239]], [[270edo|270]], [[571edo|571]], [[841edo|841]], [[1111edo|1111]]
EDOs: [[31edo|31]], [[239edo|239]], [[270edo|270]], [[571edo|571]], [[841edo|841]], [[1111edo|1111]]
Badness: 0.0179
Badness: 0.0179


=Decoid=  
=Decoid=
Commas: 2401/2400, 67108864/66976875
Commas: 2401/2400, 67108864/66976875


Line 194: Line 222:


Map: [&lt;10 0 47 36|, &lt;0 2 -3 -1|]
Map: [&lt;10 0 47 36|, &lt;0 2 -3 -1|]
Wedgie: &lt;&lt;20 -30 -10 -94 -72 61||
Wedgie: &lt;&lt;20 -30 -10 -94 -72 61||
EDOs: 10, 120, 130, 270
EDOs: 10, 120, 130, 270
Badness: 0.0339
Badness: 0.0339


==11-limit==  
==11-limit==
Commas: 2401/2400, 5832/5825, 9801/9800
Commas: 2401/2400, 5832/5825, 9801/9800


Line 204: Line 235:


Map: [&lt;10 0 47 36 98|, &lt;0 2 -3 -1 -8|]
Map: [&lt;10 0 47 36 98|, &lt;0 2 -3 -1 -8|]
EDOs: 130, 270, 670, 940, 1210
EDOs: 130, 270, 670, 940, 1210
Badness: 0.0187
Badness: 0.0187


==13-limit==  
==13-limit==
Commas: 676/675, 1001/1000, 1716/1715, 4225/4224
Commas: 676/675, 1001/1000, 1716/1715, 4225/4224


Line 213: Line 246:


Map: [&lt;10 0 47 36 98 37|, &lt;0 2 -3 -1 -8 0|]
Map: [&lt;10 0 47 36 98 37|, &lt;0 2 -3 -1 -8 0|]
EDOs: 130, 270, 940, 1480
EDOs: 130, 270, 940, 1480
Badness: 0.0135
Badness: 0.0135


Line 222: Line 257:


Map: [&lt;1 3 12 8|, &lt;0 -6 -41 -22|]
Map: [&lt;1 3 12 8|, &lt;0 -6 -41 -22|]
Weggie: &lt;&lt;6 41 22 51 18 -64||
Weggie: &lt;&lt;6 41 22 51 18 -64||
EDOs: 72, 161, 233, 305
EDOs: 72, 161, 233, 305
Badness: 0.0882
Badness: 0.0882


Line 232: Line 270:


Map: [&lt;1 3 12 8 7|, &lt;0 -6 -41 -22 -15|]
Map: [&lt;1 3 12 8 7|, &lt;0 -6 -41 -22 -15|]
EDOs: 72, 161, 233, 305
EDOs: 72, 161, 233, 305
Badness: 0.0280
Badness: 0.0280


Line 241: Line 281:


Map: [&lt;1 3 12 8 7 7|, &lt;0 -6 -41 -22 -15 -14|]
Map: [&lt;1 3 12 8 7 7|, &lt;0 -6 -41 -22 -15 -14|]
EDOs: 72, 161f, 233f
EDOs: 72, 161f, 233f
Badness: 0.0269
Badness: 0.0269


Line 252: Line 294:


Map: [&lt;1 11 42 25|,  &lt;0 -14 -59 -33|]
Map: [&lt;1 11 42 25|,  &lt;0 -14 -59 -33|]
Wedgie: &lt;&lt;14 59 33 61 13 -89||
Wedgie: &lt;&lt;14 59 33 61 13 -89||
EDOs: 58, 113, 171, 742, 913, 1084, 1255, 2681d, 3936d
EDOs: 58, 113, 171, 742, 913, 1084, 1255, 2681d, 3936d
Badness: 0.0167
Badness: 0.0167


Line 262: Line 307:


Map: [&lt;1 27 24 20|, &lt;0 -34 -29 -23|]
Map: [&lt;1 27 24 20|, &lt;0 -34 -29 -23|]
Wedgie: &lt;&lt;34 29 23 -33 -59 -28||
Wedgie: &lt;&lt;34 29 23 -33 -59 -28||
EDOs: 95, 99, 202, 301, 400, 701, 1001c, 1802c, 2903c
EDOs: 95, 99, 202, 301, 400, 701, 1001c, 1802c, 2903c
Badness: 0.0373
Badness: 0.0373


Line 272: Line 320:


Map: [&lt;1 29 33 25|, &lt;0 -42 -47 -34|]
Map: [&lt;1 29 33 25|, &lt;0 -42 -47 -34|]
Wedgie: &lt;&lt;42 47 34 -23 -64 -53||
Wedgie: &lt;&lt;42 47 34 -23 -64 -53||
EDOs: 72, 167, 239, 311, 694, 1005c
EDOs: 72, 167, 239, 311, 694, 1005c
Badness: 0.0753
Badness: 0.0753


Line 282: Line 333:


Map: [&lt;1 29 33 25 25|, &lt;0 -42 -47 -34 -33|]
Map: [&lt;1 29 33 25 25|, &lt;0 -42 -47 -34 -33|]
EDOs: 72, 167, 239, 311, 1316c
EDOs: 72, 167, 239, 311, 1316c
Badness: 0.0229
Badness: 0.0229


Line 291: Line 344:


Map: [&lt;1 29 33 25 25 99|, &lt;0 -42 -47 -34 -33 -146|]
Map: [&lt;1 29 33 25 25 99|, &lt;0 -42 -47 -34 -33 -146|]
EDOs: 72, 311, 694, 1005c, 1699cd
EDOs: 72, 311, 694, 1005c, 1699cd
Badness: 0.0209
Badness: 0.0209


Line 300: Line 355:


Map: [&lt;1 1 19 11|, &lt;0 2 -57 -28|]
Map: [&lt;1 1 19 11|, &lt;0 2 -57 -28|]
Wedgie: &lt;&lt;2 -57 -28 -95 -50 95||
Wedgie: &lt;&lt;2 -57 -28 -95 -50 95||
EDOs: 41, 188, 229, 270, 1121, 1391, 1661, 1931, 2201, 6333bc
EDOs: 41, 188, 229, 270, 1121, 1391, 1661, 1931, 2201, 6333bc
Badness: 0.0419
Badness: 0.0419


Line 310: Line 368:


Map: [&lt;1 1 19 11 -10|, &lt;0 2 -57 -28 46|]
Map: [&lt;1 1 19 11 -10|, &lt;0 2 -57 -28 46|]
EDOs: 41, 188, 229, 270, 581, 851, 1121, 1972, 3093b, 4214b
EDOs: 41, 188, 229, 270, 581, 851, 1121, 1972, 3093b, 4214b
Badness: 0.0195
Badness: 0.0195


Line 319: Line 379:


Map: [&lt;1 1 19 11 -10 -20|, &lt;0 2 -57 -28 46 81|]
Map: [&lt;1 1 19 11 -10 -20|, &lt;0 2 -57 -28 46 81|]
EDOs: 41, 229, 270, 581, 851, 2283b, 3134b
EDOs: 41, 229, 270, 581, 851, 2283b, 3134b
Badness: 0.0138
Badness: 0.0138


Line 328: Line 390:


Map: [&lt;1 3 6 5|, &lt;0 -20 -52 -31|]
Map: [&lt;1 3 6 5|, &lt;0 -20 -52 -31|]
Wedgie: &lt;&lt;20 52 31 36 -7 -74||
Wedgie: &lt;&lt;20 52 31 36 -7 -74||
EDOs: 99, 212, 311, 410, 1131, 1541b
EDOs: 99, 212, 311, 410, 1131, 1541b
Badness: 0.0455
Badness: 0.0455


Line 338: Line 403:


Map: [&lt;1 25 -31 -8|, &lt;0 -26 37 12|]
Map: [&lt;1 25 -31 -8|, &lt;0 -26 37 12|]
Wedgie: &lt;&lt;26 -37 -12 -119 -92 76||
Wedgie: &lt;&lt;26 -37 -12 -119 -92 76||
EDOs: 10, 151, 161, 171, 3581bcd, 3752bcd, 3923bcd, 4094bcd, 4265bcd, 4436bcd, 4607bcd
EDOs: 10, 151, 161, 171, 3581bcd, 3752bcd, 3923bcd, 4094bcd, 4265bcd, 4436bcd, 4607bcd
Badness: 0.0441
Badness: 0.0441


Line 348: Line 416:


Map: [&lt;1 31 34 26|, &lt;0 -52 -56 -41|]
Map: [&lt;1 31 34 26|, &lt;0 -52 -56 -41|]
Wedgie: &lt;&lt;52 56 41 -32 -81 -62||
Wedgie: &lt;&lt;52 56 41 -32 -81 -62||
EDOs: 76, 99, 274, 373, 472, 571, 1043, 1614
EDOs: 76, 99, 274, 373, 472, 571, 1043, 1614
Badness: 0.0576
Badness: 0.0576


Line 358: Line 429:


Map: [&lt;1 19 0 6}, &lt;0 -60 8 -11|]
Map: [&lt;1 19 0 6}, &lt;0 -60 8 -11|]
Wedgie: &lt;&lt;60 -8 11 -152 -151 48||
Wedgie: &lt;&lt;60 -8 11 -152 -151 48||
EDOs: 31, 348, 379, 410, 441, 1354, 1795, 2236
EDOs: 31, 348, 379, 410, 441, 1354, 1795, 2236
Badness: 0.0458
Badness: 0.0458


Line 368: Line 442:


Map: [&lt;1 13 33 21|, &lt;0 -32 -86 -51|]
Map: [&lt;1 13 33 21|, &lt;0 -32 -86 -51|]
Wedgie: &lt;&lt;32 86 51 62 -9 -123||
Wedgie: &lt;&lt;32 86 51 62 -9 -123||
EDOs: 157, 171, 1012, 1183, 1354, 1525, 1696, 6955d
EDOs: 157, 171, 1012, 1183, 1354, 1525, 1696, 6955d
Badness: 0.0283
Badness: 0.0283


Line 378: Line 455:


Map: [&lt;1 5 1 3|, &lt;0 -18 7 -1|]
Map: [&lt;1 5 1 3|, &lt;0 -18 7 -1|]
Wedgie: &lt;&lt;18 -7 1 -53 -49 22||
Wedgie: &lt;&lt;18 -7 1 -53 -49 22||
EDOs: 21, 37, 58, 153bc, 211bcd, 269bcd
EDOs: 21, 37, 58, 153bc, 211bcd, 269bcd
Badness: 0.1584
Badness: 0.1584


Line 388: Line 468:


Map: [&lt;1 5 1 3 1|, &lt;0 -18 7 -1 13|]
Map: [&lt;1 5 1 3 1|, &lt;0 -18 7 -1 13|]
EDOs: 21, 37, 58, 153bce, 211bcde, 269bcde
EDOs: 21, 37, 58, 153bce, 211bcde, 269bcde
Badness: 0.059
Badness: 0.059


Line 397: Line 479:


Map: [&lt;1 5 1 3 1 2|, &lt;0 -18 7 -1 13 9|]
Map: [&lt;1 5 1 3 1 2|, &lt;0 -18 7 -1 13 9|]
EDOs: 21, 37, 58, 153bcef, 211bcdef
EDOs: 21, 37, 58, 153bcef, 211bcdef
Badness: 0.0322
Badness: 0.0322


Line 406: Line 490:


Map: [&lt;1 19 8 10|, &lt;0 -46 -15 -19|]
Map: [&lt;1 19 8 10|, &lt;0 -46 -15 -19|]
Wedgie: &lt;&lt;46 15 19 -83 -99 2||
Wedgie: &lt;&lt;46 15 19 -83 -99 2||
EDOs: 37, 103, 140, 243, 383, 1009cd, 1392cd
EDOs: 37, 103, 140, 243, 383, 1009cd, 1392cd
Badness: 0.1005
Badness: 0.1005


Line 416: Line 503:


Map: [&lt;1 19 8 10 8|, &lt;0 -46 -15 -19 -12|]
Map: [&lt;1 19 8 10 8|, &lt;0 -46 -15 -19 -12|]
EDOs: 37, 103, 140, 243e
EDOs: 37, 103, 140, 243e
Badness: 0.0565
Badness: 0.0565


Line 425: Line 514:


Map: [&lt;1 19 8 10 8 9|, &lt;0 -46 -15 -19 -12 -14|]
Map: [&lt;1 19 8 10 8 9|, &lt;0 -46 -15 -19 -12 -14|]
EDOs: 37, 103, 140, 243e
EDOs: 37, 103, 140, 243e
Badness: 0.0274
Badness: 0.0274


Line 434: Line 525:


Map: [&lt;1 5 9 7|, &lt;0 -22 -43 -27|]
Map: [&lt;1 5 9 7|, &lt;0 -22 -43 -27|]
EDOs: 45, 58, 103, 161, 586b, 747bc, 908bc
EDOs: 45, 58, 103, 161, 586b, 747bc, 908bc
Badness: 0.12567
Badness: 0.12567


Line 443: Line 536:


Map: [&lt;1 5 9 7 12|, &lt;0 -22 -43 -27 -55|]
Map: [&lt;1 5 9 7 12|, &lt;0 -22 -43 -27 -55|]
EDOs: 58, 103, 161, 425b, 586b, 747bc
EDOs: 58, 103, 161, 425b, 586b, 747bc
Badness: 0.0400
Badness: 0.0400


Line 452: Line 547:


Map: [&lt;1 5 9 7 12 11|, &lt;0 -22 -43 -27 -55 -47|]
Map: [&lt;1 5 9 7 12 11|, &lt;0 -22 -43 -27 -55 -47|]
EDOs: 58, 103, 161
EDOs: 58, 103, 161
Badness: 0.0218
Badness: 0.0218


Line 461: Line 558:


Map: [&lt;1 13 17 13|, &lt;0 -28 -36 -25|]
Map: [&lt;1 13 17 13|, &lt;0 -28 -36 -25|]
Wedgie: &lt;&lt;[28 36 25 -8 -39 -43||
Wedgie: &lt;&lt;[28 36 25 -8 -39 -43||
EDOs: 27, 76, 103, 130
EDOs: 27, 76, 103, 130
Badness: 0.0796
Badness: 0.0796


Line 471: Line 571:


Map: [&lt;1 13 17 13 32|, &lt;0 -28 -36 -25 -70|]
Map: [&lt;1 13 17 13 32|, &lt;0 -28 -36 -25 -70|]
EDOs: 103, 130, 233, 363, 493e, 856be
EDOs: 103, 130, 233, 363, 493e, 856be
Badness: 0.0368
Badness: 0.0368


Line 480: Line 582:


Map:  [&lt;1 13 17 13 32 9|, &lt;0 -28 -36 -25 -70 -13|]
Map:  [&lt;1 13 17 13 32 9|, &lt;0 -28 -36 -25 -70 -13|]
EDOs: 103, 130, 233, 363
EDOs: 103, 130, 233, 363
Badness: 0.0217</pre></div>
 
<h4>Original HTML content:</h4>
Badness: 0.0217
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Breedsmic temperaments&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:98:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:98 --&gt;&lt;!-- ws:start:WikiTextTocRule:99: --&gt;&lt;a href="#Hemififths"&gt;Hemififths&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:99 --&gt;&lt;!-- ws:start:WikiTextTocRule:100: --&gt;&lt;!-- ws:end:WikiTextTocRule:100 --&gt;&lt;!-- ws:start:WikiTextTocRule:101: --&gt;&lt;!-- ws:end:WikiTextTocRule:101 --&gt;&lt;!-- ws:start:WikiTextTocRule:102: --&gt;&lt;!-- ws:end:WikiTextTocRule:102 --&gt;&lt;!-- ws:start:WikiTextTocRule:103: --&gt;&lt;!-- ws:end:WikiTextTocRule:103 --&gt;&lt;!-- ws:start:WikiTextTocRule:104: --&gt; | &lt;a href="#Semihemi"&gt;Semihemi&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:104 --&gt;&lt;!-- ws:start:WikiTextTocRule:105: --&gt;&lt;!-- ws:end:WikiTextTocRule:105 --&gt;&lt;!-- ws:start:WikiTextTocRule:106: --&gt; | &lt;a href="#Tertiaseptal"&gt;Tertiaseptal&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:106 --&gt;&lt;!-- ws:start:WikiTextTocRule:107: --&gt;&lt;!-- ws:end:WikiTextTocRule:107 --&gt;&lt;!-- ws:start:WikiTextTocRule:108: --&gt;&lt;!-- ws:end:WikiTextTocRule:108 --&gt;&lt;!-- ws:start:WikiTextTocRule:109: --&gt;&lt;!-- ws:end:WikiTextTocRule:109 --&gt;&lt;!-- ws:start:WikiTextTocRule:110: --&gt; | &lt;a href="#Hemitert"&gt;Hemitert&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:110 --&gt;&lt;!-- ws:start:WikiTextTocRule:111: --&gt; | &lt;a href="#Harry"&gt;Harry&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:111 --&gt;&lt;!-- ws:start:WikiTextTocRule:112: --&gt;&lt;!-- ws:end:WikiTextTocRule:112 --&gt;&lt;!-- ws:start:WikiTextTocRule:113: --&gt;&lt;!-- ws:end:WikiTextTocRule:113 --&gt;&lt;!-- ws:start:WikiTextTocRule:114: --&gt; | &lt;a href="#Quasiorwell"&gt;Quasiorwell&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:114 --&gt;&lt;!-- ws:start:WikiTextTocRule:115: --&gt;&lt;!-- ws:end:WikiTextTocRule:115 --&gt;&lt;!-- ws:start:WikiTextTocRule:116: --&gt;&lt;!-- ws:end:WikiTextTocRule:116 --&gt;&lt;!-- ws:start:WikiTextTocRule:117: --&gt; | &lt;a href="#Decoid"&gt;Decoid&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:117 --&gt;&lt;!-- ws:start:WikiTextTocRule:118: --&gt;&lt;!-- ws:end:WikiTextTocRule:118 --&gt;&lt;!-- ws:start:WikiTextTocRule:119: --&gt;&lt;!-- ws:end:WikiTextTocRule:119 --&gt;&lt;!-- ws:start:WikiTextTocRule:120: --&gt; | &lt;a href="#Neominor"&gt;Neominor&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:120 --&gt;&lt;!-- ws:start:WikiTextTocRule:121: --&gt;&lt;!-- ws:end:WikiTextTocRule:121 --&gt;&lt;!-- ws:start:WikiTextTocRule:122: --&gt;&lt;!-- ws:end:WikiTextTocRule:122 --&gt;&lt;!-- ws:start:WikiTextTocRule:123: --&gt; | &lt;a href="#Emmthird"&gt;Emmthird&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:123 --&gt;&lt;!-- ws:start:WikiTextTocRule:124: --&gt; | &lt;a href="#Quinmite"&gt;Quinmite&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:124 --&gt;&lt;!-- ws:start:WikiTextTocRule:125: --&gt; | &lt;a href="#Unthirds"&gt;Unthirds&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:125 --&gt;&lt;!-- ws:start:WikiTextTocRule:126: --&gt;&lt;!-- ws:end:WikiTextTocRule:126 --&gt;&lt;!-- ws:start:WikiTextTocRule:127: --&gt;&lt;!-- ws:end:WikiTextTocRule:127 --&gt;&lt;!-- ws:start:WikiTextTocRule:128: --&gt; | &lt;a href="#Newt"&gt;Newt&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:128 --&gt;&lt;!-- ws:start:WikiTextTocRule:129: --&gt;&lt;!-- ws:end:WikiTextTocRule:129 --&gt;&lt;!-- ws:start:WikiTextTocRule:130: --&gt;&lt;!-- ws:end:WikiTextTocRule:130 --&gt;&lt;!-- ws:start:WikiTextTocRule:131: --&gt; | &lt;a href="#Amicable"&gt;Amicable&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:131 --&gt;&lt;!-- ws:start:WikiTextTocRule:132: --&gt; | &lt;a href="#Septidiasemi"&gt;Septidiasemi&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:132 --&gt;&lt;!-- ws:start:WikiTextTocRule:133: --&gt; | &lt;a href="#Maviloid"&gt;Maviloid&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:133 --&gt;&lt;!-- ws:start:WikiTextTocRule:134: --&gt; | &lt;a href="#Subneutral"&gt;Subneutral&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:134 --&gt;&lt;!-- ws:start:WikiTextTocRule:135: --&gt; | &lt;a href="#Osiris"&gt;Osiris&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:135 --&gt;&lt;!-- ws:start:WikiTextTocRule:136: --&gt; | &lt;a href="#Gorgik"&gt;Gorgik&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:136 --&gt;&lt;!-- ws:start:WikiTextTocRule:137: --&gt;&lt;!-- ws:end:WikiTextTocRule:137 --&gt;&lt;!-- ws:start:WikiTextTocRule:138: --&gt;&lt;!-- ws:end:WikiTextTocRule:138 --&gt;&lt;!-- ws:start:WikiTextTocRule:139: --&gt; | &lt;a href="#Fibo"&gt;Fibo&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:139 --&gt;&lt;!-- ws:start:WikiTextTocRule:140: --&gt;&lt;!-- ws:end:WikiTextTocRule:140 --&gt;&lt;!-- ws:start:WikiTextTocRule:141: --&gt;&lt;!-- ws:end:WikiTextTocRule:141 --&gt;&lt;!-- ws:start:WikiTextTocRule:142: --&gt; | &lt;a href="#Mintone"&gt;Mintone&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:142 --&gt;&lt;!-- ws:start:WikiTextTocRule:143: --&gt;&lt;!-- ws:end:WikiTextTocRule:143 --&gt;&lt;!-- ws:start:WikiTextTocRule:144: --&gt;&lt;!-- ws:end:WikiTextTocRule:144 --&gt;&lt;!-- ws:start:WikiTextTocRule:145: --&gt; | &lt;a href="#Catafourth"&gt;Catafourth&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:145 --&gt;&lt;!-- ws:start:WikiTextTocRule:146: --&gt;&lt;!-- ws:end:WikiTextTocRule:146 --&gt;&lt;!-- ws:start:WikiTextTocRule:147: --&gt;&lt;!-- ws:end:WikiTextTocRule:147 --&gt;&lt;!-- ws:start:WikiTextTocRule:148: --&gt;
&lt;!-- ws:end:WikiTextTocRule:148 --&gt;&lt;br /&gt;
&lt;br /&gt;
Breedsmic temperaments are rank two temperaments tempering out the breedsma, |-5 -1 -2 4&amp;gt; = 2401/2400. This is the amount by which two 49/40 intervals exceed 3/2, and by which two 60/49 intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system (12edo, for example) which does not possess a neutral third cannot be tempering out the breedsma.&lt;br /&gt;
&lt;br /&gt;
It is also the amount by which four stacked 10/7 intervals exceed 25/6: 10000/2401 * 2401/2400 = 10000/2400 = 25/6, which is two octaves above the chromatic semitone, 25/24. We might note also that 49/40 * 10/7 = 7/4 and 49/40 * (10/7)^2 = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40+60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Hemififths"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Hemififths&lt;/h1&gt;
Hemififths tempers out 5120/5103, the hemifamity comma, and 10976/10935, hemimage. It has a neutral third as a generator, with &lt;a class="wiki_link" href="/99edo"&gt;99edo&lt;/a&gt; and &lt;a class="wiki_link" href="/140edo"&gt;140edo&lt;/a&gt; providing good tunings, and &lt;a class="wiki_link" href="/239edo"&gt;239edo&lt;/a&gt; an even better one; and other possible tunings are (160)^(1/25), giving just 5s, the 7 and 9 limit minimax tuning, or 14^(1/13), giving just 7s. It may be called the 41&amp;amp;58 temperament and has wedgie &amp;lt;&amp;lt;2 25 13 35 15 -40||, which tells us that it requires 25 generator steps to get to the class for major thirds, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17 and 24 note MOS are suited. The full force of this highly accurate temperament can be found using the 41 note MOS or even the 34 note 2MOS.&lt;br /&gt;
&lt;br /&gt;
By adding 243/242 (which also means 441/440, 540/539 and 896/891) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. &lt;a class="wiki_link" href="/99edo"&gt;99edo&lt;/a&gt; is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding 144/143 brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be 16/13. 99 remains a good tuning choice.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="Hemififths-5-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;5-limit&lt;/h2&gt;
Comma: 858993459200/847288609443&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~655360/531441 = 351.476&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 1 -5|, &amp;lt;0 2 25|]&lt;br /&gt;
EDOs: 41, 58, 99, 239, 338, 915b, 1253bc&lt;br /&gt;
Badness: 0.3728&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Hemififths-7-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;7-limit&lt;/h2&gt;
Commas: 2401/2400, 5120/5103&lt;br /&gt;
&lt;br /&gt;
7 and 9-limit minimax&lt;br /&gt;
[|1 0 0 0&amp;gt;, |7/5, 0, 2/25, 0&amp;gt;, |0 0 1 0&amp;gt;, |8/5 0 13/25 0&amp;gt;]&lt;br /&gt;
Eigenvalues: 2, 5&lt;br /&gt;
&lt;br /&gt;
Algebraic generator: (2 + sqrt(2))/2&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 1 -5 -1|, &amp;lt;0 2 25 13|]&lt;br /&gt;
EDOs: &lt;a class="wiki_link" href="/41edo"&gt;41&lt;/a&gt;, &lt;a class="wiki_link" href="/58edo"&gt;58&lt;/a&gt;, &lt;a class="wiki_link" href="/99edo"&gt;99&lt;/a&gt;, &lt;a class="wiki_link" href="/239edo"&gt;239&lt;/a&gt;, &lt;a class="wiki_link" href="/338edo"&gt;338&lt;/a&gt;&lt;br /&gt;
Badness: 0.0222&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="Hemififths-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;11-limit&lt;/h2&gt;
Commas: 243/242, 441/440, 896/891&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~11/9 = 351.521&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 1 -5 -1 2|, &amp;lt;0 2 25 13 5|]&lt;br /&gt;
EDOs: 7, 17, 41, 58, 99&lt;br /&gt;
Badness: 0.0235&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Hemififths-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;13-limit&lt;/h2&gt;
Commas: 144/143, 196/195, 243/242, 364/363&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~11/9 = 351.573&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 1 -5 -1 2 4|, &amp;lt;0 2 25 13 5 -1|]&lt;br /&gt;
EDOs: 7, 17, 41, 58, 99&lt;br /&gt;
Badness: 0.0191&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Semihemi"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Semihemi&lt;/h1&gt;
Commas: 2401/2400, 3388/3375, 9801/9800&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~49/40 = 351.505&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;2 0 -35 -15 -47|, &amp;lt;0 2 25 13 34|]&lt;br /&gt;
EDOs: 58, 140, 198, 734bc, 932bcd, 1130bcd&lt;br /&gt;
Badness: 42.487&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Semihemi-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;13-limit&lt;/h2&gt;
Commas: 352/351, 676/675, 847/845, 1716/1715&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~49/40 = 351.502&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;2 0 -35 -15 -47 -37|, &amp;lt;0 2 25 13 34 28|]&lt;br /&gt;
EDOs: 58, 140, 198, 536f, 734bcf, 932bcdf&lt;br /&gt;
Badness: 0.0212&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="Tertiaseptal"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Tertiaseptal&lt;/h1&gt;
Aside from the breedsma, tertiaseptal tempers out 65625/65536, the horwell comma, 703125/702464, the meter, and 2100875/2097152. It can be described as the 140&amp;amp;171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. &lt;a class="wiki_link" href="/171edo"&gt;171edo&lt;/a&gt; makes for an excellent tuning. The 15 or 16 note MOS can be used to explore no-threes harmony, and the 31 note MOS gives plenty of room for those as well.&lt;br /&gt;
&lt;br /&gt;
Commas: 2401/2400, 65625/65536&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~256/245 = 77.191&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 3 2 3|, &amp;lt;0 -22 5 -3|]&lt;br /&gt;
EDOs: 15, 16, 31, 109, 140, 171&lt;br /&gt;
Badness: 0.0130&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="Tertiaseptal-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;11-limit&lt;/h2&gt;
Commas: 243/242, 441/440, 65625/65536&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~256/245 = 77.227&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 3 2 3 7|, &amp;lt;0 -22 5 -3 -55|]&lt;br /&gt;
EDOs: 15, 16, 31, 171, 202&lt;br /&gt;
Badness: 0.0356&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="Tertiaseptal-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;13-limit&lt;/h2&gt;
Commas: 243/242, 441/440, 625/624, 3584/3575&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~117/112 = 77.203&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 3 2 3 7 1|, &amp;lt;0 -22 5 -3 -55 42|]&lt;br /&gt;
EDOs: 31, 140e, 171, 373ef, 544ef&lt;br /&gt;
Badness: 0.0369&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc10"&gt;&lt;a name="Tertiaseptal-Tertia"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;Tertia&lt;/h2&gt;
Commas: 385/384, 1331/1323, 1375/1372&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~22/21 = 77.173&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 3 2 3 5|, &amp;lt;0 -22 5 -3 -24|]&lt;br /&gt;
EDOs: 31, 109, 140, 171e, 311e&lt;br /&gt;
Badness: 0.0302&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc11"&gt;&lt;a name="Hemitert"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;Hemitert&lt;/h1&gt;
Commas: 2401/2400 3025/3024 65625/65536&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~45/44 = 38.596&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 3 2 3 6|, &amp;lt;0 -44 10 -6 -79|]&lt;br /&gt;
EDOs: 31, 280, 311, 342, 2021cde, 3731cde&lt;br /&gt;
Badness: 0.0156&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc12"&gt;&lt;a name="Harry"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;Harry&lt;/h1&gt;
Commas: 2401/2400, 19683/19600&lt;br /&gt;
&lt;br /&gt;
Harry adds cataharry, 19683/19600, to the set of commas. It may be described as the 58&amp;amp;72 temperament, with wedgie &amp;lt;&amp;lt;12 34 20 26 -2 -49||. The period is half an octave, and the generator 21/20, with generator tunings of 9\130 or 14\202 being good choices. MOS of size 14, 16, 30, 44 or 58 are among the scale choices.&lt;br /&gt;
&lt;br /&gt;
Harry becomes much more interesting as we move to the 11-limit, where we can add 243/242, 441/440 and 540/539 to the set of commas. 130 and especially 202 still make for good tuning choices, and the octave part of the wedgie is &amp;lt;&amp;lt;12 34 20 30 ...||.&lt;br /&gt;
&lt;br /&gt;
Similar comments apply to the 13-limit, where we can add 351/350 and 364/363 to the commas, with &amp;lt;&amp;lt;12 34 20 30 52 ...|| as the octave wedgie. &lt;a class="wiki_link" href="/130edo"&gt;130edo&lt;/a&gt; is again a good tuning choice, but even better might be tuning 7s justly, which can be done via a generator of 83.1174 cents. 72 notes of harry gives plenty of room even for the 13-limit harmonies.&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~21/20 = 83.156&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;2 4 7 7|, &amp;lt;0 -6 -17 -10|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;12 34 20 26 -2 -49||&lt;br /&gt;
EDOs: 14, 58, 72, 130, 202, 534, 938&lt;br /&gt;
Badness: 0.0341&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc13"&gt;&lt;a name="Harry-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;11-limit&lt;/h2&gt;
Commas: 243/242, 441/440, 4000/3993&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~21/20 = 83.167&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;2 4 7 7 9|, &amp;lt;0 -6 -17 -10 -15|]&lt;br /&gt;
EDOs: 14, 58, 72, 130, 202&lt;br /&gt;
Badness: 0.0159&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:28:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc14"&gt;&lt;a name="Harry-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:28 --&gt;13-limit&lt;/h2&gt;
Commas: 243/242, 351/350, 441/440, 676/675&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~21/20 = 83.116&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;2 4 7 7 9 11|, &amp;lt;0 -6 -17 -10 -15 -26|]&lt;br /&gt;
EDOs: 14, 58, 72, 130, 462&lt;br /&gt;
Badness: 0.0130&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:30:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc15"&gt;&lt;a name="Quasiorwell"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:30 --&gt;Quasiorwell&lt;/h1&gt;
In addition to 2401/2400, quasiorwell tempers out 29360128/29296875 = |22 -1 -10 1&amp;gt;. It has a wedgie &amp;lt;&amp;lt;38 -3 8 -93 -94 27||. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31&amp;amp;270 temperament, and as one might expect, 61/270 makes for an excellent tuning choice. Other possibilities are (7/2)^(1/8), giving just 7s, or 384^(1/38), giving pure fifths.&lt;br /&gt;
&lt;br /&gt;
Adding 3025/3024 extends to the 11-limit and gives &amp;lt;&amp;lt;38 -3 8 64 ...|| for the initial wedgie, and as expected, 270 remains an excellent tuning.&lt;br /&gt;
&lt;br /&gt;
Commas: 2401/2400, 29360128/29296875&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~1024/875 = 271.107&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 31 0 9|, &amp;lt;0 -38 3 -8|]&lt;br /&gt;
EDOs: &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/177edo"&gt;177&lt;/a&gt;, &lt;a class="wiki_link" href="/208edo"&gt;208&lt;/a&gt;, &lt;a class="wiki_link" href="/239edo"&gt;239&lt;/a&gt;, &lt;a class="wiki_link" href="/270edo"&gt;270&lt;/a&gt;, &lt;a class="wiki_link" href="/571edo"&gt;571&lt;/a&gt;, &lt;a class="wiki_link" href="/841edo"&gt;841&lt;/a&gt;, &lt;a class="wiki_link" href="/1111edo"&gt;1111&lt;/a&gt;&lt;br /&gt;
Badness: 0.0358&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:32:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc16"&gt;&lt;a name="Quasiorwell-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:32 --&gt;11-limit&lt;/h2&gt;
Commas: 2401/2400, 3025/3024, 5632/5625&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~90/77 = 271.111&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 31 0 9 53|, &amp;lt;0 -38 3 -8 -64|]&lt;br /&gt;
EDOs: &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/208edo"&gt;208&lt;/a&gt;, &lt;a class="wiki_link" href="/239edo"&gt;239&lt;/a&gt;, &lt;a class="wiki_link" href="/270edo"&gt;270&lt;/a&gt;&lt;br /&gt;
Badness: 0.0175&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:34:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc17"&gt;&lt;a name="Quasiorwell-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:34 --&gt;13-limit&lt;/h2&gt;
Commas: 1001/1000, 1716/1715, 3025/3024, 4096/4095&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~90/77 = 271.107&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 31 0 9 53 -59|, &amp;lt;0 -38 3 -8 -64 81|]&lt;br /&gt;
EDOs: &lt;a class="wiki_link" href="/31edo"&gt;31&lt;/a&gt;, &lt;a class="wiki_link" href="/239edo"&gt;239&lt;/a&gt;, &lt;a class="wiki_link" href="/270edo"&gt;270&lt;/a&gt;, &lt;a class="wiki_link" href="/571edo"&gt;571&lt;/a&gt;, &lt;a class="wiki_link" href="/841edo"&gt;841&lt;/a&gt;, &lt;a class="wiki_link" href="/1111edo"&gt;1111&lt;/a&gt;&lt;br /&gt;
Badness: 0.0179&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:36:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc18"&gt;&lt;a name="Decoid"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:36 --&gt;Decoid&lt;/h1&gt;
Commas: 2401/2400, 67108864/66976875&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~8/7 = 231.099&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;10 0 47 36|, &amp;lt;0 2 -3 -1|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;20 -30 -10 -94 -72 61||&lt;br /&gt;
EDOs: 10, 120, 130, 270&lt;br /&gt;
Badness: 0.0339&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:38:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc19"&gt;&lt;a name="Decoid-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:38 --&gt;11-limit&lt;/h2&gt;
Commas: 2401/2400, 5832/5825, 9801/9800&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~8/7 = 231.070&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;10 0 47 36 98|, &amp;lt;0 2 -3 -1 -8|]&lt;br /&gt;
EDOs: 130, 270, 670, 940, 1210&lt;br /&gt;
Badness: 0.0187&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:40:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc20"&gt;&lt;a name="Decoid-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:40 --&gt;13-limit&lt;/h2&gt;
Commas: 676/675, 1001/1000, 1716/1715, 4225/4224&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~8/7 = 231.083&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;10 0 47 36 98 37|, &amp;lt;0 2 -3 -1 -8 0|]&lt;br /&gt;
EDOs: 130, 270, 940, 1480&lt;br /&gt;
Badness: 0.0135&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:42:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc21"&gt;&lt;a name="Neominor"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:42 --&gt;Neominor&lt;/h1&gt;
Commas: 2401/2400, 177147/175616&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~189/160 = 283.280&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 3 12 8|, &amp;lt;0 -6 -41 -22|]&lt;br /&gt;
Weggie: &amp;lt;&amp;lt;6 41 22 51 18 -64||&lt;br /&gt;
EDOs: 72, 161, 233, 305&lt;br /&gt;
Badness: 0.0882&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:44:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc22"&gt;&lt;a name="Neominor-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:44 --&gt;11-limit&lt;/h2&gt;
Commas: 243/242, 441/440, 35937/35840&lt;br /&gt;
&lt;br /&gt;
POTE: ~33/28 = 283.276&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 3 12 8 7|, &amp;lt;0 -6 -41 -22 -15|]&lt;br /&gt;
EDOs: 72, 161, 233, 305&lt;br /&gt;
Badness: 0.0280&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:46:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc23"&gt;&lt;a name="Neominor-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:46 --&gt;13-limit&lt;/h2&gt;
Commas: 169/168, 243/242, 364/363, 441/440&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~13/11 = 283.294&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 3 12 8 7 7|, &amp;lt;0 -6 -41 -22 -15 -14|]&lt;br /&gt;
EDOs: 72, 161f, 233f&lt;br /&gt;
Badness: 0.0269&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:48:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc24"&gt;&lt;a name="Emmthird"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:48 --&gt;Emmthird&lt;/h1&gt;
The generator for emmthird temperament is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935.&lt;br /&gt;
&lt;br /&gt;
Commas: 2401/2400, 14348907/14336000&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~2744/2187 = 392.988&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 11 42 25|,  &amp;lt;0 -14 -59 -33|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;14 59 33 61 13 -89||&lt;br /&gt;
EDOs: 58, 113, 171, 742, 913, 1084, 1255, 2681d, 3936d&lt;br /&gt;
Badness: 0.0167&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:50:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc25"&gt;&lt;a name="Quinmite"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:50 --&gt;Quinmite&lt;/h1&gt;
Commas: 2401/2400, 1959552/1953125&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~25/21 = 302.997&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 27 24 20|, &amp;lt;0 -34 -29 -23|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;34 29 23 -33 -59 -28||&lt;br /&gt;
EDOs: 95, 99, 202, 301, 400, 701, 1001c, 1802c, 2903c&lt;br /&gt;
Badness: 0.0373&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:52:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc26"&gt;&lt;a name="Unthirds"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:52 --&gt;Unthirds&lt;/h1&gt;
Commas: 2401/2400, 68359375/68024448&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~3969/3125 = 416.717&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 29 33 25|, &amp;lt;0 -42 -47 -34|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;42 47 34 -23 -64 -53||&lt;br /&gt;
EDOs: 72, 167, 239, 311, 694, 1005c&lt;br /&gt;
Badness: 0.0753&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:54:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc27"&gt;&lt;a name="Unthirds-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:54 --&gt;11-limit&lt;/h2&gt;
Commas: 2401/2400, 3025/3024, 4000/3993&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~14/11 = 416.718&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 29 33 25 25|, &amp;lt;0 -42 -47 -34 -33|]&lt;br /&gt;
EDOs: 72, 167, 239, 311, 1316c&lt;br /&gt;
Badness: 0.0229&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:56:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc28"&gt;&lt;a name="Unthirds-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:56 --&gt;13-limit&lt;/h2&gt;
Commas: 625/624, 1575/1573, 2080/2079, 2401/2400&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~14/11 = 416.716&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 29 33 25 25 99|, &amp;lt;0 -42 -47 -34 -33 -146|]&lt;br /&gt;
EDOs: 72, 311, 694, 1005c, 1699cd&lt;br /&gt;
Badness: 0.0209&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:58:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc29"&gt;&lt;a name="Newt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:58 --&gt;Newt&lt;/h1&gt;
Commas: 2401/2400, 33554432/33480783&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~49/40 = 351.113&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 1 19 11|, &amp;lt;0 2 -57 -28|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;2 -57 -28 -95 -50 95||&lt;br /&gt;
EDOs: 41, 188, 229, 270, 1121, 1391, 1661, 1931, 2201, 6333bc&lt;br /&gt;
Badness: 0.0419&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:60:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc30"&gt;&lt;a name="Newt-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:60 --&gt;11-limit&lt;/h2&gt;
Commas: 2401/2400, 3025/3024, 19712/19683&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~49/40 = 351.115&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 1 19 11 -10|, &amp;lt;0 2 -57 -28 46|]&lt;br /&gt;
EDOs: 41, 188, 229, 270, 581, 851, 1121, 1972, 3093b, 4214b&lt;br /&gt;
Badness: 0.0195&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:62:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc31"&gt;&lt;a name="Newt-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:62 --&gt;13-limit&lt;/h2&gt;
Commas: 2080/2079, 2401/2400, 3025/3024, 4096/4095&lt;br /&gt;
&lt;br /&gt;
POTE genertaor: ~49/40 = 351.117&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 1 19 11 -10 -20|, &amp;lt;0 2 -57 -28 46 81|]&lt;br /&gt;
EDOs: 41, 229, 270, 581, 851, 2283b, 3134b&lt;br /&gt;
Badness: 0.0138&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:64:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc32"&gt;&lt;a name="Amicable"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:64 --&gt;Amicable&lt;/h1&gt;
Commas: 2401/2400, 1600000/1594323&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~21/20 = 84.880&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 3 6 5|, &amp;lt;0 -20 -52 -31|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;20 52 31 36 -7 -74||&lt;br /&gt;
EDOs: 99, 212, 311, 410, 1131, 1541b&lt;br /&gt;
Badness: 0.0455&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:66:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc33"&gt;&lt;a name="Septidiasemi"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:66 --&gt;Septidiasemi&lt;/h1&gt;
Commas: 2401/2400, 2152828125/2147483648&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~15/14 = 119.297&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 25 -31 -8|, &amp;lt;0 -26 37 12|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;26 -37 -12 -119 -92 76||&lt;br /&gt;
EDOs: 10, 151, 161, 171, 3581bcd, 3752bcd, 3923bcd, 4094bcd, 4265bcd, 4436bcd, 4607bcd&lt;br /&gt;
Badness: 0.0441&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:68:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc34"&gt;&lt;a name="Maviloid"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:68 --&gt;Maviloid&lt;/h1&gt;
Commas: 2401/2400, 1224440064/1220703125&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~1296/875 = 678.810&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 31 34 26|, &amp;lt;0 -52 -56 -41|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;52 56 41 -32 -81 -62||&lt;br /&gt;
EDOs: 76, 99, 274, 373, 472, 571, 1043, 1614&lt;br /&gt;
Badness: 0.0576&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:70:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc35"&gt;&lt;a name="Subneutral"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:70 --&gt;Subneutral&lt;/h1&gt;
Commas: 2401/2400, 274877906944/274658203125&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~57344/46875 = 348.301&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 19 0 6}, &amp;lt;0 -60 8 -11|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;60 -8 11 -152 -151 48||&lt;br /&gt;
EDOs: 31, 348, 379, 410, 441, 1354, 1795, 2236&lt;br /&gt;
Badness: 0.0458&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:72:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc36"&gt;&lt;a name="Osiris"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:72 --&gt;Osiris&lt;/h1&gt;
Commas: 2401/2400, 31381059609/31360000000&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~2800/2187 = 428.066&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 13 33 21|, &amp;lt;0 -32 -86 -51|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;32 86 51 62 -9 -123||&lt;br /&gt;
EDOs: 157, 171, 1012, 1183, 1354, 1525, 1696, 6955d&lt;br /&gt;
Badness: 0.0283&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:74:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc37"&gt;&lt;a name="Gorgik"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:74 --&gt;Gorgik&lt;/h1&gt;
Commas: 2401/2400, 28672/28125&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~8/7 = 227.512&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 5 1 3|, &amp;lt;0 -18 7 -1|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;18 -7 1 -53 -49 22||&lt;br /&gt;
EDOs: 21, 37, 58, 153bc, 211bcd, 269bcd&lt;br /&gt;
Badness: 0.1584&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:76:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc38"&gt;&lt;a name="Gorgik-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:76 --&gt;11-limit&lt;/h2&gt;
Commas: 176/175, 2401/2400, 2560/2541&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~8/7 = 227.500&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 5 1 3 1|, &amp;lt;0 -18 7 -1 13|]&lt;br /&gt;
EDOs: 21, 37, 58, 153bce, 211bcde, 269bcde&lt;br /&gt;
Badness: 0.059&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:78:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc39"&gt;&lt;a name="Gorgik-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:78 --&gt;13-limit&lt;/h2&gt;
Commas: 176/175, 196/195, 364/363, 512/507&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~8/7 = 227.493&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 5 1 3 1 2|, &amp;lt;0 -18 7 -1 13 9|]&lt;br /&gt;
EDOs: 21, 37, 58, 153bcef, 211bcdef&lt;br /&gt;
Badness: 0.0322&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:80:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc40"&gt;&lt;a name="Fibo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:80 --&gt;Fibo&lt;/h1&gt;
Commas: 2401/2400, 341796875/339738624&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~125/96 = 454.310&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 19 8 10|, &amp;lt;0 -46 -15 -19|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;46 15 19 -83 -99 2||&lt;br /&gt;
EDOs: 37, 103, 140, 243, 383, 1009cd, 1392cd&lt;br /&gt;
Badness: 0.1005&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:82:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc41"&gt;&lt;a name="Fibo-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:82 --&gt;11-limit&lt;/h2&gt;
Commas: 385/384, 1375/1372, 43923/43750&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~100/77 = 454.318&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 19 8 10 8|, &amp;lt;0 -46 -15 -19 -12|]&lt;br /&gt;
EDOs: 37, 103, 140, 243e&lt;br /&gt;
Badness: 0.0565&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:84:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc42"&gt;&lt;a name="Fibo-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:84 --&gt;13-limit&lt;/h2&gt;
Commas: 385/384, 625/624, 847/845, 1375/1372&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~13/10 = 454.316&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 19 8 10 8 9|, &amp;lt;0 -46 -15 -19 -12 -14|]&lt;br /&gt;
EDOs: 37, 103, 140, 243e&lt;br /&gt;
Badness: 0.0274&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:86:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc43"&gt;&lt;a name="Mintone"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:86 --&gt;Mintone&lt;/h1&gt;
Commas: 2401/2400, 177147/175000&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~10/9 = 186.343&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 5 9 7|, &amp;lt;0 -22 -43 -27|]&lt;br /&gt;
EDOs: 45, 58, 103, 161, 586b, 747bc, 908bc&lt;br /&gt;
Badness: 0.12567&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:88:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc44"&gt;&lt;a name="Mintone-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:88 --&gt;11-limit&lt;/h2&gt;
Commas: 243/242, 441/440, 43923/43750&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~10/9 = 186.345&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 5 9 7 12|, &amp;lt;0 -22 -43 -27 -55|]&lt;br /&gt;
EDOs: 58, 103, 161, 425b, 586b, 747bc&lt;br /&gt;
Badness: 0.0400&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:90:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc45"&gt;&lt;a name="Mintone-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:90 --&gt;13-limit&lt;/h2&gt;
Commas: 243/242, 351/350, 441/440, 847/845&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~10/9 = 186.347&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 5 9 7 12 11|, &amp;lt;0 -22 -43 -27 -55 -47|]&lt;br /&gt;
EDOs: 58, 103, 161&lt;br /&gt;
Badness: 0.0218&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:92:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc46"&gt;&lt;a name="Catafourth"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:92 --&gt;Catafourth&lt;/h1&gt;
Commas: 2400/2401, 78732/78125&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~250/189 = 489.235&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 13 17 13|, &amp;lt;0 -28 -36 -25|]&lt;br /&gt;
Wedgie: &amp;lt;&amp;lt;[28 36 25 -8 -39 -43||&lt;br /&gt;
EDOs: 27, 76, 103, 130&lt;br /&gt;
Badness: 0.0796&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:94:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc47"&gt;&lt;a name="Catafourth-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:94 --&gt;11-limit&lt;/h2&gt;
Commas: 243/242, 441/440, 78408/78125&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~250/189 = 489.252&lt;br /&gt;
&lt;br /&gt;
Map: [&amp;lt;1 13 17 13 32|, &amp;lt;0 -28 -36 -25 -70|]&lt;br /&gt;
EDOs: 103, 130, 233, 363, 493e, 856be&lt;br /&gt;
Badness: 0.0368&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:96:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc48"&gt;&lt;a name="Catafourth-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:96 --&gt;13-limit&lt;/h2&gt;
Commas: 243/242, 351/350, 441/440, 10985/10976&lt;br /&gt;
&lt;br /&gt;
POTE generator: ~65/49 = 489.256&lt;br /&gt;
&lt;br /&gt;
Map:  [&amp;lt;1 13 17 13 32 9|, &amp;lt;0 -28 -36 -25 -70 -13|]&lt;br /&gt;
EDOs: 103, 130, 233, 363&lt;br /&gt;
Badness: 0.0217&lt;/body&gt;&lt;/html&gt;</pre></div>