User:CompactStar/Ordinal interval notation: Difference between revisions
CompactStar (talk | contribs) No edit summary |
CompactStar (talk | contribs) No edit summary |
||
Line 127: | Line 127: | ||
|G | |G | ||
|} | |} | ||
The simplest (with respect to [[Tenney height]]) interval inside a category does not use any lefts or rights (or is "central"), for example [[6/5]] for minor 3rd. The simplest interval which is flatter than the central interval is left ([[7/6]] for minor 3rd), and the simplest interval which is sharper is right ([[11/9]] for minor 3rd). Then the simplest interval which is flatter than the left is leftleft, the simplest interval between left and central is leftright , the simplest interval which is between central and right is rightleft, and the simplest interval which is sharper than right is rightright. This process of bisection with lefts/rights can be continued infinitely to name all just intervals that are in a category. Interval arithmetic is preserved (e.g. M2 | The simplest (with respect to [[Tenney height]]) interval inside a category does not use any lefts or rights (or is "central"), for example [[6/5]] for minor 3rd. The simplest interval which is flatter than the central interval is left ([[7/6]] for minor 3rd), and the simplest interval which is sharper is right ([[11/9]] for minor 3rd). Then the simplest interval which is flatter than the left is leftleft, the simplest interval between left and central is leftright , the simplest interval which is between central and right is rightleft, and the simplest interval which is sharper than right is rightright. This process of bisection with lefts/rights can be continued infinitely to name all just intervals that are in a category. Interval arithmetic is preserved (e.g. M2 * M2 is always M3), however the lefts and rights do not combine like accidentals do. |