Carlos Beta: Difference between revisions

Wikispaces>guest
**Imported revision 250944596 - Original comment: **
Wikispaces>Kosmorsky
**Imported revision 288516182 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2011-09-05 17:25:31 UTC</tt>.<br>
: This revision was by author [[User:Kosmorsky|Kosmorsky]] and made on <tt>2011-12-26 16:16:35 UTC</tt>.<br>
: The original revision id was <tt>250944596</tt>.<br>
: The original revision id was <tt>288516182</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 10: Line 10:
==Theory==  
==Theory==  
Beta is a non-octave, equally tempered scale discovered by [[Wendy Carlos]]. It divides the [[just perfect fifth]] into 11 parts. Each interval is 63.8 [[cent]]s in size. The [[sycamore family]] of temperaments is related to Beta; betic and [[5-limit]] sycamore in particular.
Beta is a non-octave, equally tempered scale discovered by [[Wendy Carlos]]. It divides the [[just perfect fifth]] into 11 parts. Each interval is 63.8 [[cent]]s in size. The [[sycamore family]] of temperaments is related to Beta; betic and [[5-limit]] sycamore in particular.
Lookalikes: [[19edo]]


==Intervals==  
==Intervals==  
Line 68: Line 70:
  &lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Carlos Beta (equal division of the perfect fifth into 11 equal parts)-Theory"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Theory&lt;/h2&gt;
  &lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Carlos Beta (equal division of the perfect fifth into 11 equal parts)-Theory"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Theory&lt;/h2&gt;
  Beta is a non-octave, equally tempered scale discovered by &lt;a class="wiki_link" href="/Wendy%20Carlos"&gt;Wendy Carlos&lt;/a&gt;. It divides the &lt;a class="wiki_link" href="/just%20perfect%20fifth"&gt;just perfect fifth&lt;/a&gt; into 11 parts. Each interval is 63.8 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s in size. The &lt;a class="wiki_link" href="/sycamore%20family"&gt;sycamore family&lt;/a&gt; of temperaments is related to Beta; betic and &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; sycamore in particular.&lt;br /&gt;
  Beta is a non-octave, equally tempered scale discovered by &lt;a class="wiki_link" href="/Wendy%20Carlos"&gt;Wendy Carlos&lt;/a&gt;. It divides the &lt;a class="wiki_link" href="/just%20perfect%20fifth"&gt;just perfect fifth&lt;/a&gt; into 11 parts. Each interval is 63.8 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s in size. The &lt;a class="wiki_link" href="/sycamore%20family"&gt;sycamore family&lt;/a&gt; of temperaments is related to Beta; betic and &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; sycamore in particular.&lt;br /&gt;
&lt;br /&gt;
Lookalikes: &lt;a class="wiki_link" href="/19edo"&gt;19edo&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="Carlos Beta (equal division of the perfect fifth into 11 equal parts)-Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Intervals&lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="Carlos Beta (equal division of the perfect fifth into 11 equal parts)-Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Intervals&lt;/h2&gt;